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Abstract 

A major source of inefficiency in automated problem solvers is their inability to de- 
compose problems and work on the more difficult parts first. This issue can be 
addressed by employing a hierarchy of abstract problem spaces to focus the search. 
Instead of solving a problem in the original problem space, a problem is first solved 
in an abstract space, and the abstract solution is then refined at successive levels in 
the hierarchy. While this use of abstraction can significantly reduce search, it is often 
difficult to find good abstractions, and the abstractions must be manually engineered 
by the designer of a problem domain. 

This thesis presents a completely automated approach to generating abstractions 
for problem solving. The abstractions are generated using a tractable, domain- 
independent algorithm whose only inputs are the definition of a problem space and 
the problem to be solved and whose output is an abstraction hierarchy that is tai- 
lored to the particular problem. The algorithm generates abstraction hierarchies that 
satisfy the "ordered monotonicity" property, which guarantees that the structure of 
an abstract solution is not changed in the process of refining it. An abstraction hier- 
archy with this property allows a problem to be decomposed such that the solution 
in an abstract space can be held invariant while the remaining parts of a problem are 
solved. 

The algorithm for generating abstractions is implemented in a system called 
ALPINE, which generates abstractions for a hierarchical version of the PRODIGY prob- 
lem solver. The thesis formally defines this hierarchical problem solving method, 
shows that under certain assumptions this method can reduce the size of a search 
space from exponential to linear in the solution size, and describes the implementa- 
tion of this method in PRODIGY. The abstractions generated by ALPINE are tested 
in multiple domains on large problem sets and are shown to produce shorter solu- 
tions with significantly less search than problem solving without using abstraction. 
ALPINE's automatically generated abstractions produce an 85% reduction in search 
time on the hardest problem sets in two different test domains, including the time to 
generate the abstractions. 
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Chapter 1 

Introduction 

Given a complex problem, automated problem solvers usually forge ahead, blindly 
addressing central and peripheral issues alike, without any understanding of which 
parts of a problem are more difficult and should therefore be solved first. This can 
result in a significant amount of wasted effort since a problem solver will spend time 
solving the details only to have to discard the solutions in the process of solving 
the more difficult aspects. Even for simple tasks, like building a stack of blocks or 
finding a path for a robot through a configuration of rooms, brute-force search can be 
ineffective since the search spaces can be quite large. As problem solvers are applied 
to increasingly complex problems, the ability to decompose a problem and solve the 
more difficult parts first becomes even more critical. 

An effective approach to building more intelligent problem solvers is to use ab- 
straction in order to help focus the search. Abstraction has been used successfully 
to reduce search in a number of problem solvers including GPS [Newell and Simon, 
1972], ABSTRIPS [Sacerdoti, 1974], NOAH [Sacerdoti, 1977], NONLIN [Täte, 1976] MOL- 
GEN [Stefik, 1981] and SIPE [Wilkins, 1984]. These systems use abstraction to focus 
attention on the difficult parts of the problem, leaving the details or less critical parts 
of a problem to be filled in later. This is usually done by first solving a problem in 
an abstract space and then using the abstract solution to guide the problem solving 
of the original more complex problem. 

While abstraction has been widely used in problem solving, the problem of finding 
good abstractions has not been carefully studied, and has not been automated. In 
most problem solvers that use abstraction, the designer of a problem space must 
manually engineer the appropriate abstractions. This process is largely a black art 
since it is not even well-understood what makes a good abstraction. In addition, 
most existing hierarchical problem solvers employ a single, fixed abstraction hierarchy 
for all problems in a given domain, but in many cases the best abstraction for a 
problem is specific to the particular problem at hand.  Automatically constructing 
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abstractions for problem solving frees the designer of a problem space from concerns 
about efficiency and it makes it practical to construct abstractions that are tailored 
to individual problems or classes of problems. 

This dissertation develops a theory of what makes a good abstraction for prob- 
lem solving, presents an approach to generating abstractions automatically using the 
theory, and investigates the use of these abstractions for problem solving. To demon- 
strate these ideas, the thesis describes the design, implementation, and evaluation of 
an abstraction learner and hierarchical problem solver. The implemented system pro- 
duces abstractions in a variety of problem spaces and the experiments show that these 
abstractions provide significant reductions in search over problem solving without the 
use of abstraction. 

1.1    Problem Solving 

Problem solving involves finding a sequence of actions (operators) that solve some 
problem. A problem is defined in terms of an initial state and a set of goal condi- 
tions. The legal operators are defined in terms of preconditions and effects, where 
the preconditions must be satisfied before the action can be applied, and the effects 
describe the changes to the state in which the action is applied. A solution to a 
problem consists of a sequence of operators that transform the given initial state into 
some final state that satisfies the goals. The terms "problem solving" and "planning" 
have both been used to describe this process, although problem solving is sometimes 
considered to subsume planning. This thesis uses the terms interchangeably. 

The problem-solving framework is sufficiently general to represent tasks in a large 
variety of domains, ranging from simple block stacking to more complex process 
planning and scheduling tasks. While problem solvers differ in the languages they 
use to express actions, and thus in the types of problems they can represent, they all 
share the problem of how to control search. Even the simplest problems can be hard 
to solve due to the large search spaces. 

This thesis builds on the PRODIGY problem solver [Minton et a/., 1989a, Minton 
et a/., 1989b, Carboneil et a/., 1991]. PRODIGY is a means-ends analysis problem 
solver that was designed as a testbed for learning in the context of problem solving. 
The idea is to start with a simple and elegant problem solver that has a sufficiently 
expressive language to represent interesting problems. The problem solver is given a 
specification of the problem space and is expected to become proficient in the given 
space by forming its own control knowledge through both analysis of the problem 
space and problem-solving experience. 

In addition to the basic problem solver, PRODIGY consists of a number of learn- 
ing modules, including modules for explanation-based learning [Minton, 1988a], static 
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learning [Etzioni, 1990], learning by analogy [Veloso and Carbonell, 1990], learning by 
experimentation [Carbonell and Gil, 1990], graphical knowledge acquisition [Joseph, 
1989], and abstraction generation. While this thesis describes only the problem solv- 
ing and abstraction generation components of PRODIGY, it does provide comparisons 
with the explanation-based and static learning modules. Since the same basic problem 
solver serves as the underlying performance engine for the various learning modules, 
it facilitates both the comparison and integration of various approaches to reduc- 
ing search in problem solving and enables the evaluation of the abstraction learning 
component on problem spaces that were previously developed in PRODIGY. As such, 
PRODIGY provides an ideal testbed for the work in this thesis. 

1.2    Hierarchical Problem Solving 

Hierarchical problem solvers employ one or more abstractions of a problem space to 
reduce the search in problem solving. Instead of attempting to solve problems in 
the original problem space by plowing through the morass of details associated with 
a problem, a hierarchical problem solver first solves a problem in a simpler abstract 
space where the problem solver can focus on the "real" problem and ignore the details. 

There are several ways to form an abstraction of a problem space. The approach 
used in this thesis is to remove properties (literals) from the problem space. This has 
the effect of forming a reduced model of the original space in which a single abstract 
state corresponds to one or more states in the original problem space. In this thesis, 
the language of a reduced model is a subset of the language of the original problem 
space. An alternative approach to constructing abstraction spaces is to form a relaxed 
model by weakening the applicability conditions of the operators in a problem space. 
This was the approach taken in ABSTRIPS [Sacerdoti, 1974], where the preconditions 
of the operators were assigned criticality values and all preconditions with criticality 
values below a certain threshold were ignored. 

A hierarchical problem solver is given a problem to be solved, a ground-level 
problem space, and one or more abstractions of that problem space. As illustrated 
in Figure 1.1, the abstractions are arranged in a hierarchy, where a problem is first 
mapped into the most abstract space in the hierarchy, solved in that space, and then 
the abstract solution is refined through successively more detailed spaces until the 
original problem is solved. An abstract solution is refined at each level by inserting 
operators to achieve the conditions that were ignored at the more abstract spaces. 

An example problem domain in which hierarchical problem solving can signifi- 
cantly reduce search is a process planning and scheduling domain. The problem is to 
make a set of parts, which requires determining the particular machining operations 
needed to construct the parts and scheduling the operations on the available ma- 
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Figure 1.1: Hierarchical Problem Solving 

chines. A natural abstraction of this problem, and one that is used in practice, is to 
separate the selection and ordering of the operations from the actual scheduling of the 
operations on the machines. This abstraction eliminates wasted effort by detecting 
interactions caused by the ordering of the operators before the scheduling has even 
been considered. 

Hierarchical problem solving can reduce the size of the search space from expo- 
nential to linear in the size of the solution under certain assumptions. For single-level 
problem solving the size of the search space is exponential in the solution length. Hi- 
erarchical problem solving reduces this complexity by taking a large complex problem 
and decomposing it into a number of smaller subproblems. This thesis formally defines 
hierarchical problem solving, provides a theoretical analysis of the search reduction 
and identifies the conditions under which the technique can produce an exponential 
reduction in the size of the search space. 

The hierarchical problem-solving method described in the thesis is implemented 
as an extension to the PRODIGY problem solver. The system was extended by adding 
a module to perform the hierarchical control, while employing the basic PRODIGY 
system to solve the subproblems that arise at each abstraction level. This approach 
maintains both the problem space and control languages of PRODIGY, with the added 
functionality of hierarchical problem solving. 
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1.3     Generating Abstraction Hierarchies 

While it has been shown that using abstractions for hierarchical problem solving 
can reduce search, a question that previously has not been addressed is how to find 
an effective set of abstractions for use in problem solving. In most of the existing 
hierarchical problem solvers, the abstractions are constructed by the designer of the 
problem space. While this is possible in some cases, it is often difficult to find good 
abstractions and impractical to tailor them to individual problems. 

A good abstraction is one that separates out those parts of the problem that can 
be solved first and then held invariant while other parts of a problem are solved. To 
capture this idea, the thesis identifies two properties of an abstraction hierarchy - the 
monotonicity and ordered monotonicity properties. 

Monotonicity Property: the existence of a ground-level solution implies the exis- 
tence of an abstract-level solution that can be refined into a ground solution 
while leaving the literals established in the abstract plan unchanged. 

The monotonicity property holds for all abstraction hierarchies and guarantees that if 
a solution exists it can be found without modifying the abstract plans. This property 
is useful because it provides a criterion for backtracking that preserves completeness. 
Whenever a problem solver would undo a literal established in an abstract plan while 
refining the plan, the system can backtrack instead. Yang and Tenenberg [1990] devel- 
oped a complete nonlinear, least-commitment problem solver using the monotonicity 
property to constrain the search for a refinement of an abstract plan. While the 
property is useful for constraining the refinement process, it is not restrictive enough 
to provide a criterion for generating abstractions. 

A restriction of the monotonicity property, called the ordered monotonicity prop- 
erty, does provide a useful criterion for generating abstraction spaces. This property 
is defined as follows: 

Ordered Monotonicity Property: every refinement of an abstract plan leaves all 
the literals that comprise the abstract space unchanged. 

The ordered monotonicity property is more restrictive than the monotonicity because 
it not only requires that there exists a refinement of an abstract plan that leaves the 
literals in the abstract plan unchanged, but that every refinement of an abstract plan 
leaves all the literals in the abstract space unchanged. This property can be used as 
the basis of an algorithm for constructing hierarchies of abstraction spaces. 

This thesis presents a tractable algorithm for automatically generating abstrac- 
tion hierarchies from only the initial problem space definition and a problem to be 
solved. Using the definition of a problem space, the algorithm determines the possible 
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interactions between literals, which define a set of constraints on the final abstraction 
hierarchy. The algorithm partitions the literals of a problem space into levels such 
that the literals in one level do not interact with literals in a more abstract level. The 
resulting abstraction hierarchies are guaranteed to satisfy the ordered monotonicity 
property. 

In the previous work on hierarchical problem solving, the problem solver was 
provided with a single, fixed abstraction hierarchy. However, what makes a good 
abstraction for one problem may make a bad abstraction for another. Thus, the 
algorithm presented in the thesis generates abstraction hierarchies that are tailored 
to the individual problems. For example, the STRIPS robot planning domain [Fikes 
and Nilsson, 1971] involves using a robot to move boxes among rooms and opening and 
closing doors as necessary. For problems that simply involve moving boxes between 
rooms, doors are a detail that can be ignored since the robot can simply open the 
doors as needed. However, for problems that require opening or closing a door as 
a top-level goal, whether a door is open or closed is no longer a detail since it may 
require planning a path to get to the door. 

The algorithm for generating abstractions is implemented in the ALPINE system. 
Given a problem space and problem, ALPINE generates an abstraction hierarchy for 
the hierarchical version of PRODIGY. The system has been successfully tested on 
a number of problem-solving domains including the original STRIPS domain [Fikes 
and Nilsson, 1971], a more complex robot planning domain [Minton, 1988a], and a 
machine-shop planning and scheduling domain [Minton, 1988a]. In all these domains, 
the system efficiently generates problem-specific abstraction hierarchies that provide 
significant reductions in search. 

1.4    Closely Related Work 

This section briefly describes the most closely related work on both generating and 
using abstractions for problem solving. Chapter 6 provides a more comprehensive 
discussion of the work related to this thesis. 

The first hierarchical problem solver was implemented as a planning method in GPS 
[Newell and Simon, 1972]. Given a problem space and an abstraction of that problem 
space, GPS maps the problem into the abstract space, solves the abstract problem 
and then uses the solution to guide the problem solving in the original space. The 
system was tested in the domain of propositional logic, where in the abstract space 
the differences between the connectives is ignored. GPS provided the first automated 
use of abstraction for problem solving, but did not automate the construction of the 
abstractions. 

ABSTRIPS [Sacerdoti, 1974] employs a similar problem-solving technique to GPS 
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and was the first system to demonstrate empirically that abstraction could be used to 
reduce search in problem solving, In addition, the work on ABSTRIPS was the earliest 
attempt at automating abstraction formation. To form an abstraction hierarchy the 
system must be given an initial partial order of the problem space predicates. AB- 
STRIPS then forms the abstraction hierarchy by placing the static conditions (those 
conditions that cannot be changed by any operator) in the most abstract level and 
placing the preconditions that cannot be achieved by a "short plan" in the next level. 
The remaining levels come from the user-defined partial order. As described in Chap- 
ter 5, ALPINE completely automates the formation of the abstraction hierarchies in the 
ABSTRIPS's domain and produces abstractions that are considerably more effective at 
reducing search than the ones generated by ABSTRIPS. 

Since these early efforts, there have been a number of systems that use abstractions 
for problem solving. These systems include NOAH [Sacerdoti, 1977], MOLGEN [Stefik, 
1981], NONLIN [Täte, 1976], and SIPE [Wilkins, 1984]. However, all of these systems 
must be provided with abstractions that are hand-crafted for the individual domains. 

More recently, Unruh and Rosenbloom [1989] developed a weak method in SOAR 
[Laird et al., 1987] that dynamically forms abstractions for look-ahead search by 
ignoring unmatched preconditions. The choices made in the look-ahead search are 
stored by SOAR's chunking mechanism and the chunks are then used to guide the 
search in the original space. The system decides which conditions to ignore based on 
which conditions hold during problem solving. Since ALPINE constructs abstractions 
by analyzing the problem space and problem, while SOAR forms the abstractions 
based on which conditions did or did not hold in solving a particular problem, the 
abstractions produced by ALPINE are more likely to ignore the appropriate conditions 
for a given problems. On the other hand, the more stringent requirements on the 
abstractions formed by ALPINE prevent it from finding abstractions in problem spaces 
in which SOAR can produce abstractions (e.g., the eight puzzle). 

Christensen [1990] also built a hierarchical planner, called PABLO, that also forms 
its own abstraction hierarchies. PABLO partially evaluates the operators before prob- 
lem solving to determine the number of steps required to achieve a given goal. The 
system then uses this information to refine a plan by always focusing on the part of 
the problem that requires the greatest number of steps. This approach is a general- 
ization of the ABSTRIPS approach, where ABSTRIPS forms the abstractions based on 
whether a short plan exists, and PABLO forms the abstractions based on the length 
of the plan. A difficulty with the approach implemented in PABLO is that it may be 
expensive to partially evaluate the operators in more complex problem spaces. In 
contrast, ALPINE constructs abstractions based on the interactions between literals, 
which can be determined without requiring any partial evaluation. 

Korf [1987] developed an alternative method for using abstractions for problem 
solving. Instead of dropping conditions to form an abstract problem space, an abstract 
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space is constructed by replacing the original set of operators by a set of macro 
operators. This differs from hierarchical problem solving because once the problem 
is solved in the macro space the problem is completely solved. Korf shows that 
this approach can reduce the average search time from 0(n) to O(logn), but the 
disadvantage of this approach is that it may be difficult or impossible to define a set 
of macros that adequately cover the given problem space. 

1.5    Contributions 

The primary contributions of the thesis are the discovery and formalization of the 
properties that can be used to produce effective abstraction hierarchies, the approach 
to generating abstractions automatically, the definition and analysis of hierarchical 
problem solving, and the implementation and empirical demonstration of both the 
automatic abstraction generation and hierarchical problem solving. This section de- 
scribes each of these contributions. 

First, the thesis identifies the monotonicity property and a refinement of this 
property, called the ordered monotonicity property, which capture the critical features 
of an abstraction that determine its utility in problem solving. The monotonicity 
property is based on the idea that the basic structure of an abstract plan should not 
be changed in the process of refining the plan. This property provides a criterion for 
pruning the search for a refinement of an abstract plan since a problem solver only 
needs to consider refinements that do not violate the abstract plan structure. The 
ordered monotonicity property, in addition to pruning the search space, also provides 
an effective criterion for generating useful abstraction hierarchies. This property 
requires that the literals in an abstraction hierarchy are ordered such that achieving 
literals at one level will not interact with literals at a more abstract level. 

Second, the thesis provides a completely automated approach to generating ab- 
straction hierarchies based on the ordered monotonicity property. The algorithm 
described in the thesis is given a problem space and problem as input and, by analyz- 
ing the potential interactions, it finds a set of constraints on the possible abstractions 
hierarchies that are sufficient to guarantee the ordered monotonicity property. Be- 
cause the best abstraction hierarchy varies from problem to problem, the algorithm 
generates abstraction hierarchies that are tailored to the individual problems. The 
resulting abstraction hierarchies define a set of abstract problem spaces that are each 
a reduced model of the original problem space. These abstract spaces can then be 
used for hierarchical problem solving, as well as learning control knowledge. 

Third, the thesis presents a precise definition and analysis of hierarchical problem 
solving. Previous work on hierarchical problem solving provided only vague descrip- 
tions of the problem-solving method with little or no analysis of the potential search 



1.6.   A READER'S GUIDE TO THE THESIS 9 

reduction. The hierarchical problem-solving method described in this thesis uses the 
solutions at each abstract level to divide up a problem into a number of simpler sub- 
problems. The thesis analyzes the potential search reduction of this method, shows 
that this problem-solving method can provide an exponential-to-linear reduction in 
the size of the search space, and identifies the conditions under which such reductions 
are possible. 

Fourth, the thesis provides an implementation and empirical demonstration of 
both the abstraction learner and hierarchical problem solver. The abstractions are 
generated by a system called ALPINE and then used in a hierarchical version of the 
PRODIGY problem solver. The thesis presents results on both generating and using 
abstractions on large sets of problems in multiple problem spaces that had been 
previously denned in PRODIGY. The use of abstraction is compared in PRODIGY 
to single-level problem solving, as well as problem solving with hand-coded control 
knowledge and control knowledge learned by EBL [Minton, 1988a] and STATIC [Etzioni, 
1990]. The results show that the abstractions provide significant reductions in search 
and improvements in solution quality. 

1.6    A Reader's Guide to the Thesis 

The thesis is divided into seven chapters, which describe problem solving, hierarchical 
problem solving, automatically generating abstractions, results, related work, and 
limitations and future work. The chapters of the thesis are organized as follows. 

Chapter 2 presents the basic problem-solving model. This chapter defines a prob- 
lem space and the corresponding problem solving terminology, and then describes the 
PRODIGY problem solver, which forms the underlying system for the implementation 
and evaluation of the ideas in the thesis. Chapters 2, 3, and 4 all have the same in- 
ternal organization. They first present the basic ideas of the chapter, then illustrate 
these ideas using the Tower of Hanoi domain, and lastly, describe the implementation 
of the ideas. 

Chapter 3 describes how the abstractions are used for hierarchical problem solving. 
This chapter defines an abstraction space, presents a method for hierarchical problem 
solving, shows that this method can produce an exponential-to-linear reduction in the 
size of the search space, and identifies the conditions under which such a reduction is 
possible. The last section of this chapter describes the implementation of hierarchical 
problem solving in PRODIGY. 

Chapter 4 presents an approach to automatically generating abstraction hierar- 
chies for problem solving. This chapter explores the relationships between a problem 
space and abstractions of a problem space, defines the monotonicity and ordered 
monotonicity properties, and then describes an algorithm for generating abstractions 
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based on the ordered monotonicity property. Lastly this chapter describes an imple- 
mented system called ALPINE that produces problem-specific abstraction hierarchies 
using this algorithm. 

Chapter 5 presents the empirical results for both generating and using the abstrac- 
tions for problem solving. This chapter is divided into four sections. The first section 
explores the affect of the problem-solving search strategy on the search reduction in 
hierarchical problem solving. The second section presents empirical results for both 
generating and using abstractions in ALPINE. The third section compares the use of 
the abstractions generated by ALPINE to the use of control knowledge generated using 
explanation-based learning. The last section compares the abstractions generated by 
ALPINE to those generated by ABSTRIPS. 

Chapter 6 compares and contrasts the work in this thesis with other work related 
to generating and using abstractions for problem solving. 

The final chapter, Chapter 7, describes the limitations of this work, presents a 
number of directions for future work, and attempts to characterize where this thesis 
leaves off and what remains to be done. 

There are four appendices to the thesis, which contain the problem space defini- 
tions, example problems, and experimental results for the four different domains used 
in this thesis. Appendix A presents the Tower of Hanoi, Appendix B presents the 
extended robot-planning domain, Appendix C presents the machine-shop planning 
and scheduling domain, and Appendix D presents the original STRIPS domain as it is 
encoded in PRODIGY. 

There are several ways one can approach this thesis besides reading the entire 
document from cover to cover. For a glimpse at the content of the thesis, read the 
example sections on the Tower of Hanoi - Sections 2.2, 3.4, and 4.3. These sections 
illustrate the basic ideas using the Tower of Hanoi puzzle. All the chapters of the thesis 
are fairly self-contained, and the reader should be able to skip around by reading the 
definitions at the beginning of the preceding chapters. On a first reading, the reader 
may want to skim the formal definitions and proofs. 



Chapter 2 

Problem Solving 

Problem solving is a process that has been widely studied in AI from the early days 
of GPS [Newell et al, 1962, Ernst and Newell, 1969] and STRIPS [Fikes and Nilsson, 
1971] to more recent planners such as SIPE [Wilkins, 1984], SOAR [Laird et al, 1987] 
and PRODIGY [Minton et al, 1989b, Minton et al, 1989a, Carbonell et al, 1991]. A 
problem solver is a given a problem space definition and a problem and is asked to 
find a solution to the problem. A problem space is defined by the legal operators and 
states. Operators are composed of a set of conditions, called preconditions, that must 
be true in order to apply an operator and a set of effects that describe the changes 
to the state that result from applying an operator. States are composed of a set of 
conditions that describe the relevant features of a model of the world. A problem 
consists of an initial state, which describes the initial configuration of the world, and a 
goal, which describes the desired configuration. To solve a problem, a problem solver 
must find a sequence of operators that transform the initial state into a state that 
satisfies the goal. 

This chapter contains three parts - a formal definition of problem solving, an 
example problem solving task, and a description of the PRODIGY problem solver. 
The formal definition of problem solving provides a precise definition of the task 
and the corresponding terminology, which is in turn used in the definitions in the 
following chapters. The second part provides an example from the Tower of Hanoi 
domain. This example is used throughout the thesis to illustrate the basic ideas. The 
last section describes the PRODIGY problem solver, which provides the foundation for 
the implementation of the ideas in the thesis. 

11 



12 CHAPTER 2.   PROBLEM SOLVING 

2.1     Definition of Problem Solving 

A problem space E is a triple (L, S, O), where L is a first-order language, 5 is a set of 
states, and 0 is a set of operators.1 Each state Si G S is a finite and consistent set of 
atomic sentences in L. Each operator a G 0 is defined by a triple (PQ, DQ, Aa), where 
Pa, the preconditions, are a set of literals (positive or negative atomic sentences) in 
L, and both the deletes Da and adds Aa are finite sets of atomic sentences in L. The 
combination of the adds and deletes comprise the effects of an operator Ea, such that 
if p G Aa then p G Ea and if p G Da then (->p) G Ea. 

'   A problem p consists of two components: 

• An initial state So G S, where So is a description of an initial state of the world. 

• A goal state Sg G S, where Sg is a partial description of a desired state. 

The solution (or plan) II to a problem is a sequence of operators that transforms the 
initial state So into some final state Sn that satisfies the goal state Sg. A plan is 
composed of the concatenation of operators or subplans. (The '||' symbol is used to 
represent the concatenation of operators or sequences of operators.) 

Let A : O x S —+ S be an application procedure that applies an operator to a 
state to produce a new state by removing the deleted literals, and inserting the added 
literals. For any state Si (where '\' represents set difference), 

A(a,Si) = (Si\Da)\JAa. 

The application procedure can be extended to apply to plans in the obvious way, 
where each operator applies to each of the resulting states in sequence. Thus, given 
the initial state So, a plan II = ai||... \\an defines a sequence of states Si,..., Sn, 
where 

St = AM\... |K S0) = A{<*i, Si-i) l<i<n 

A plan II is correct whenever the preconditions of each operator are satisfied in the 
state in which the operator is applied: 

PQi QSi-i  l<i<n 

II solves a problem p — {So, Sg) whenever II is correct and the goal Sg is satisfied in 
the final state: Sg C .4(11, So). 

1The formalization of problem solving presented in this section is loosely based on Lifschitz's 
formalization of STRIPS [Lifschitz, 1986]. 
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Let P:Sx5x5-»IIbea problem solving procedure that is given a problem 
space E, an initial state So, and a goal state Sg and produces a plan II with the 
operators in E that solves the goal. 

Il = V(X,So,Sa) 

The procedure V is not guaranteed to produce a plan, since there may be goals that 
are not solvable from a given initial state and goals that are not solvable from any 
initial state. 

There are a variety of approaches to problem solving, which range from sim- 
ple forward-chaining or backward chaining to more sophisticated goal-directed ap- 
proaches, such as means-ends analysis and least-commitment planning. 

Means-ends analysis, which was developed in GPS [Newell et a/., 1962], integrates 
the forward- and backward-chaining approaches. A means-ends analysis problem 
solver identifies the differences between the goal and the current state and then se- 
lects an operator that reduces these differences. If the selected operator is directly 
applicable in the current state then it is applied to produce a new state. Otherwise 
the problem solver attempts to reduce the differences between the current state and 
the state in which the selected operator can be applied. This process is repeated 
until the initial state is transformed into a state that satisfies the goal. Other means- 
ends analysis problem solvers include STRIPS [Fikes and Nilsson, 1971] and PRODIGY 
[Carbonell et al., 1991]. 

A least-commitment problem solver, which was first implemented in NOAH [Sac- 
erdoti, 1977], searches through the space of plan refinements, instead of searching the 
state space, in order to build a partially ordered sequence of operators that solves 
a given problem. The plan refinement space consists of a set of plan modification 
operators that construct and refine a partially ordered plan. For example, an estab- 
lishment operator inserts an operator into the partial plan to achieve a goal and a 
promotion operator orders one operator before another in the plan. Chapman [1987] 
identified a complete set of plan modification operators and implemented them in 
a planner called TWEAK. Other least-commitment problem solvers include NONLIN 
[Täte, 1976], MOLGEN [Stefik, 1981], and SIPE [Wilkins, 1984]. 

2.2    Tower of Hanoi Example 

This section presents an example of problem solving in the Tower of Hanoi puzzle, 
which is then used in the following chapters to illustrate the techniques for both 
hierarchical problem solving and generating abstractions. The puzzle requires moving 
a pile of various-sized disks from one peg to another with the use of an intermediate 
peg. The constraints are that only one disk at a time can be moved, a disk can only 
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be moved if it is the top disk on a pile, and a larger disk can never be placed on 
a smaller one. Figure 2.1 shows the initial and goal states of a three-disk Tower of 
Hanoi problem. 

Initial Stat« Goal Stat* 

Figure 2.1: Initial and Goal States in the Tower of Hanoi 

There are a variety of ways to express the legal operators of the Tower of Hanoi for 
problem solving. The usual approach is to express the operators as a set of operator 
schemata, where each schema is parameterized over one or more arguments of the 
operator. Thus, each operator schema corresponds to one or more fully-instantiated 
operators. Using operator schemata the three-disk Tower of Hanoi can be axiomatized 
in three operators, where there is one schema for moving each disk. Table 2.1 shows 
the schema for moving the largest disk, diskC from a source peg to a destination peg. 
The Tower of Hanoi can also be axiomatized as a single-operator that is parameterized 
over both the pegs and the disks. The single-operator representation is described in 
Section 7.2.1. 

(Move_DiskC 
(preconds (and (on diskC source-peg) 

(not (equal source-peg dest-peg)) 
(not (on diskB source-peg)) 
(not (on diskA source-peg)) 
(not (on diskB dest-peg)) 
(not (on diskA dest-peg)))) 

(effects ((del (on diskC source-peg)) 
(add (on diskC dest-peg))))) 

Table 2.1: Operator Schema in the Tower of Hanoi 

To simplify the exposition, a fully-instantiated representation of the Tower of 
Hanoi example will be used throughout the thesis, where there is an operator for 
moving each disk between each pair of pegs. For the three-disk problem, this axiom- 
atization requires 18 operators (6 for each disk). Table 2.2 shows the operator for 
moving disk C, the largest disk, from peg 1 to 3. The preconditions require that disk 
C is initially on peg 1 and that neither disk A nor B are on peg 1 or 3. 
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(Move_DiskC_From_Pegl_to_Peg3 
(preconds (and (on diskC pegl) 

(not (on diskB pegl)) 
(not (on diskA pegl)) 
(not (on diskB peg3)) 

(not (on diskA peg3)))) 
(effects ((del (on diskC pegl)) 

(add (on diskC peg3))))) 

Table 2.2: Instantiated Operator in the Tower of Hanoi 

The difficulty of the Tower of Hanoi puzzle increases with the number of disks in 
the problem. The number of possible states for a given puzzle with n disks and p pegs 
is pn since each disk can be on one of the p pegs. The state space, which is the set 
of states reachable from the initial state using the given operators, for the three-disk 
puzzle is shown in Figure 2.2 [Nilsson, 1971]. Each node represents a state and is 
labeled with a picture of that state, and each arrow represents an operator that can 
be applied to reach the adjacent state. 

A solution to the three-disk problem given above consists of any path through 
the state space that starts at the initial state and terminates at the goal state. The 
shortest solution follows the path along the straight line between the initial and goal 
states. Means-ends analysis can be used to solve the Tower of Hanoi problem as 
follows. First, the goal is compared to the initial state and one of the differences 
is selected. There are three possible differences to consider: (on diskA peg3), (on 
diskB peg3), and (on diskC peg3). Assume the problem solver selects the last 
one. Next an operator is selected that reduces this difference. There are two possible 
operators, one for moving diskC from peg 1 to 3 and the other for moving the disk 
from peg 2 to 3. If it selects the former, then it would subgoal on moving the smaller 
disks so that this operator could be applied. This process continues until the initial 
state has been transformed into the goal state. If the problem solver reaches a dead 
end or encounters a cycle, it backtracks to one of the previous choice points in the 
search. 

2.3    Problem Solving in PRODIGY 

The PRODIGY problem solver [Minton et al, 1989b, Minton et al., 1989a, Carbonell 
et al., 1991] serves as the foundation for the implementation of the work in this thesis. 
PRODIGY is a general-purpose, means-ends analysis problem solver coupled with a va- 
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ALL Initial 
State 

Move DiskC 
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To Peg3 
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Figure 2.2: State Space of the Three-Disk Tower of Hanoi 

riety of learning mechanisms. In addition to the automatic generation of abstractions 
described in this thesis, PRODIGY includes modules for explanation-based learning 
[Minton, 1988a], static learning [Etzioni, 1990], learning by analogy [Veloso and Car- 
bonell, 1990], learning by experimentation [Carbonell and Gil, 1990], and graphical 
knowledge acquisition [Joseph, 1989]. PRODIGY has been applied to a variety of 
domains including the blocks world [Nilsson, 1980], the STRIPS domain [Fikes and 
Nilsson, 1971], an augmented version of the STRIPS domain [Minton, 1988a], discrete 
machine-shop planning and scheduling domain [Minton, 1988a], a brewery scheduling 
domain [Wilkins, 1989], and a computer configuration domain [McDermott, 1982, 
Rosenbloom et ah, 1985]. 

The section below presents an overview of the basic PRODIGY problem solver. 
It describes PRODIGY's problem space and problem definitions, describes how the 
problem solver searches this space, and explains PRODIGY's use of control rules to 
guide this search. A complete description of the PRODIGY problem solver is presented 
in [Minton et a/., 1989b], and the extensions to PRODIGY for hierarchical problem 
solving are described in the next chapter. 

The description of PRODIGY that follows draws on an example from a machine- 
shop planning and scheduling domain.   This example was previously described in 
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[Minton et ah, 1989a]. The machine-shop domain contains a variety of machines, 
such as a lathe, mill, drill, punch, spray painter, etc, which are used to perform 
various operations to produce the desired parts. Given a set of parts to be drilled, 
polished, reshaped, etc., and a fixed amount of time, the task is to find a plan to 
both create and schedule the parts that meets the given requirements. A complete 
definition of the problem space can be found in Appendix C. 

2.3.1    Problem Space Definition 

A problem space in PRODIGY is defined by a set of operators and inference rules. The 
operators describe the legal transformations between states and the inference rules 
describe the properties that can be derived from a state. 

A state is represented by a database containing a set of ground atomic formulas. 
There are two types of relations used in the system - primitive relations and defined 
relations. Primitive relations are directly observable or "closed-world". This means 
that the truth value of these relations can be immediately determined in a given 
state. Primitive relations may be added to or deleted from a state by the operators. 
In contrast, defined relations are inferred on demand using the inference rules. The 
purpose of defined relations is to avoid explicitly maintaining information that can 
be derived from the primitive relations. 

An operator is composed of a precondition expression and a list of effects. The 
precondition expression describes the conditions that must be satisfied before the 
operator can be applied. The expressions are well-formed formulas in the PRODIGY 
description language (PDL) [Minton et a/., 1989b], a language based on predicate 
logic that includes negation, conjunction, disjunction, existential quantification, and 
universal quantification over sets. The list of effects describe how the application of 
the operator changes the world. The effects are a list of atomic formulas that describe 
primitive relations to be added or deleted from the current state when the operator 
is applied. 

An example operator schema from the machine-shop problem space is shown in 
Table 2.3. This operator is used to schedule a turn operation on a part, which makes 
a part cylindrical by turning it on a lathe. The precondition requires that the lathe is 
idle and the part has not been scheduled on any machines at the same or later time 
(parts are scheduled starting at the beginning of the schedule). The effects of this 
operator are that the part has the desired cylindrical shape, it is scheduled on the 
machine, and it is now last-scheduled at the given time. There are also a number of 
side-effects from the turning operation, which include removing any paint and making 
the surface condition rough. 

Inference rules have the same syntax as operators, but are used to infer defined 
relations.  As such, an inference rule can only add defined relations, which are not 
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(TURN (part time) 
(preconditions 

(and 
(is-part part) 
(last-scheduled part prev-time) 
(later time prev-time) 
(idle lathe time))) 

(effects ( 
(delete (shape part old-shape)) 
(delete (surface-condition part old-condition)) 
(delete (painted part old-paint)) 
(delete (last-scheduled part prev-time)) 
(add (surface-condition part rough)) 
(add (shape part cylindrical)) 
(add (last-scheduled part time)) 
(add (scheduled part lathe time))))) 

Table 2.3: Operator in the Machine-Shop Domain 

found in the effects of an operator. For example, Table 2.4 provides an inference 
rule from the machine-shop problem space. This rule defines the predicate idle by 
specifying that a machine is idle during a time period if no part is scheduled for that 
machine during that time period. 

(IS-IDLE (.machine time) 
(preconditions 

(not  (exists part (scheduled part machine time)))) 
(effects 

((add (idle machine time))))) 

Table 2.4: Inference Rule in the Machine-Shop Domain 

Because inference rules are encoded and applied in a manner similar to operators, 
PRODIGY can employ a homogeneous control structure, enabling the search-control 
rules to guide the application of operators and inference rules alike. 
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2.3.2    Problem Definition 

As described earlier, a problem consists of an initial state and goal. An initial state 
is specified as a conjunction of literals. The initial state for the example, illustrated 
in Figure 2.3, contains part-b and part-c already scheduled, and part-a which has 
yet to be scheduled. The schedule consists of 20 time slots, and part-a is initially 
unpolished, oblong-shaped, and cool. 

TIME-1   TIME-2  TIME-3 TIME-4  TIME-20 

LATHE 

ROLLER 

POLISHER 

PART-B 

PART-C 

PART-B 

Figure 2.3: Initial State in the Machine-Shop Domain 

A goal is any legal PDL expression. An example goal expression for the machine- 
shop problem space is shown below, where the goal is satisfied if the part named 
part-a is polished and has a cylindrical shape. 

(and (shape part-a cylindrical) 
(surface-condition part-a polished)) 

2.3.3     Searching the Problem Space 

PRODIGY begins with a search tree containing a single node representing the initial 
state and the desired goals. The tree is expanded as follows: 

1. Decision phase: There are four types of decisions that PRODIGY makes during 
problem solving. First, it must decide what node in the search tree to expand 
next, where each node consists of a set of goals and a state describing the 
world. After selecting a node, PRODIGY chooses a goal, an operator relevant to 
achieving the goal, and an appropriate set of bindings for the operator. Each 
choice point in the decision phase can be mediated by a set of control rules, 
which are described in the next section. 

2. Expansion phase: If the instantiated operator's preconditions are satisfied, 
the operator is applied. Otherwise, PRODIGY subgoals on the unmatched pre- 
conditions. In either case, a new node is created. 

These steps are repeated until PRODIGY generates a node whose state satisfies the 
top-level goal expression or all possible search paths have been exhausted. 
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The search tree for the example problem described above is shown in Figure 2.4. 
The left side of each node shows the goal stack and the pending operators at that 
point. The right side shows the relevant subset of the state. For example, at Node 3, 
the current goal is to clamp the part. This is a precondition of the polish operator, 
which is being considered to achieve the goal of being polished. The predicates like 
cylindrical and hot in the figure are shorthand for the actual formulas, such as 
(shape part-a cylindrical) and (temperature part-a hot). 

In the search tree, the first top-level goal (shape part-a cylindrical) is not 
satisfied in the initial state. To achieve this goal, PRODIGY considers the operators 
turn and mill. Both operators have effects that unify with the goal, so either op- 
erators can be used to make a part cylindrical, but they have different side-effects. 
Since there are no control rules to guide this decision, PRODIGY arbitrarily decides to 
try mill first. In order to satisfy the preconditions of mill, PRODIGY must infer that 
part-a is available and the milling machine is idle at the desired time. Assume that 
previously acquired control knowledge indicates a preference for the earliest possible 
time slot, time-2. After milling the part at time-2, PRODIGY attempts to polish the 
part, but the preconditions of polish specify that the part must either be rectangular, 
or clamped to the polisher. Unfortunately, clamping fails, because milling the part 
has raised its temperature so that it is too hot to clamp without deforming the part 
or clamp. Since there is no operation to cool the part or make the part rectangular, 
the attempt to apply polish fails at that node. 

Backtracking chronologically, PRODIGY then tries milling the part at time-3, and 
then time-4, and so on, until the end of the schedule is reached at time-20. Each 
of these attempts fails to produce a solution because the part remains hot and is 
therefore unclampable. (In practice, a part would cool down over time, but this 
process is not modeled in the axiomatization of the domain.) In any event, the 
problem solver finally succeeds when it eventually backs up and tries turning rather 
than milling. 

2.3.4     Controlling the Search 

As PRODIGY attempts to solve a problem, it must make decisions about the selection 
of which node to expand, of which goal to work on, of which operator to apply, and 
which bindings of the operator to use. To make these decisions, PRODIGY uses search 
control rules, which may be general or problem-space specific, hand-coded or auto- 
matically acquired, and may consist of heuristic preferences or definitive selections. 
In the absence of any search control, PRODIGY defaults to depth-first search with 
chronological backtracking. 

Control rules can be employed to guide the search at the four decisions points 
described above (nodes, goals, operators, and bindings). Each control rule has an "if" 
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Figure 2.4: Search Tree in the Machine-Shop Domain 
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condition testing applicability and a "then" condition indicating whether to select, 
reject, or prefer a particular candidate. Given the alternatives at each decision 
point, PRODIGY first applies the applicable selection rules to select a subset of the 
alternatives. If no selection rules are applicable, all the alternatives are included. Next 
rejection rules further filter this set by explicitly eliminating some of the alternatives. 
Last, preference rules are used to order the remaining alternatives. 

For example, the control rule depicted in Table 2.5 is an operator rejection rule 
that states that if the current goal at a node is to reshape a part and the part must 
subsequently be polished, then reject the mill operator. The example problem from 

(DONT-MILL-BEFORE-POLISHING 
(if (and (current-node node) 

(current-goal node (shape part shape)) 
(candidate-operator node mill) 
(is-top-level-goal node 

(surface-condition part polished)))) 
(then (reject operator mill))) 

Table 2.5: Operator Rejection Rule in the Machine-Shop Domain 

the previous section illustrates why this rule is appropriate: polishing part-a after 
milling it turned out to be impossible. Had the system previously learned this rule, the 
problem would have been solved directly, without the costly backtracking at Node 1. 

Notice that the "if" condition of the control rule is written in PDL, the same lan- 
guage that is used for the preconditions of operators and inference rules, though differ- 
ent predicates are used. Meta-level predicates such as current-node and candidate- 
operator are used in control rules, whereas the predicates used in operators and 
inference rules are predicates of a problem-space definition, such as shape and idle. 
PRODIGY has a set of predefined meta-level predicates. 

PRODIGY's reliance on explicit control knowledge distinguishes it from other do- 
main-independent problem solvers. Instead of using a least-commitment search strat- 
egy, as in NOAH or SIPE, or a look-ahead search strategy, as in SOAR, PRODIGY expects 
that important decisions will be guided by the presence of appropriate control knowl- 
edge. This control knowledge can take the form of control rules, abstractions, or 
stored plans, all of which can be used to guide the search. If there is no control 
knowledge to guide a particular control decision, then PRODIGY makes the control 
choice arbitrarily. This is referred to as a casual commitment strategy. The ratio- 
nale for this strategy is that for any decision with significant ramifications, control 
knowledge should be present; if it is not, the problem solver should not attempt to 
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be clever without knowledge, rather, the cleverness should come about as a result of 
learning. Thus, the emphasis is on an elegant and simple problem solving architec- 
ture that can produce sophisticated behavior by learning control knowledge specific 
to a problem space. Control knowledge is acquired through experience as in EBL 
[Minton, 1988a] and derivational analogy [Veloso and Carbonell, 1990] or through 
problem-space analysis as in STATIC [Etzioni, 1990] and ALPINE (described in the 
following chapters). 
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Chapter 3 

Hierarchical Problem Solving 

Abstraction has been used to reduce search in a variety of problem solvers. It reduces 
search by both focusing the problem solver on the more difficult aspects of a prob- 
lem first. Most of these problem solvers employ one of three types of abstractions: 
abstract problem spaces, abstract operators, and macro problem spaces. These three 
approaches are briefly described below and then compared in more detail in Chapter 6. 

The first approach, hierarchical problem solving using abstract problem spaces, 
employs a hierarchy of abstract problem spaces to first solve a problem in an abstract 
space and then refine the abstract solution into successively more detailed spaces until 
it reaches the ground space. This type of hierarchical problem solving is sometimes 
called length-first hierarchical problem solving since a problem is solved at one level 
of abstraction before moving to the next level. The technique was first used in GPS 
[Newell et al, 1962] and ABSTRIPS [Sacerdoti, 1974]. 

The second approach, hierarchical problem solving using abstract operators, uses 
a predefined set of abstractions of the operators and expands each operator in the 
abstract plan to varying levels of detail. Instead of refining the entire plan at one 
level of detail, the problem solver refines the plan by selectively refining the individ- 
ual operators in the plan. An operator is refined by replacing an abstract operator 
with a more detailed operator and achieving the unsatisfied preconditions of the new 
operator. This approach allows one part of the abstract plan to be expanded while 
another part is ignored, but eventually the entire plan will be expanded in the ground 
space. Unlike the length-first model, the abstractions need not be a set of well-defined 
abstract problem spaces. Instead the problem solver first selects abstract operators 
that directly achieve the goals and then refines the abstract operators by inserting 
preconditions of the operators that must hold before operators can be applied in the 
ground space. This approach, which requires a least-commitment problem solver, was 
developed in NOAH [Sacerdoti, 1977] and later used in NONLIN [Täte, 1976], MOLGEN 
[Stefik, 1981], and SIPE [Wilkins, 1984]. 

25 
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The third approach, abstract problem solving using macros, takes a problem and 
maps it into an abstract space defined by a set of macro operators and then solves the 
problem in the macro space. Unlike the first two approaches, once a problem is solved 
in the macro space, the problem is completely solved since the macros are defined by 
operators in the original problem space. Korf [1987] presented the idea of replacing 
the original problem space by a macro space. Other people have explored the use 
of macros in problem solving [Fikes et a/., 1972, Minton, 1985, Laird et a/., 1986, 
Shell and Carbonell, 1989], but in most cases the macros are simply added to the 
original problem space, which may or may not reduce search [Minton, 1985]. 

The work in this thesis builds on the first approach - problem solving using ab- 
stract problem spaces. Before describing this approach to hierarchical problem solving 
in detail, the first section compares two models of abstraction spaces and describes 
the one used in this thesis. The second section provides a precise definition of hier- 
archical problem solving. The third section shows that hierarchical problem solving 
can provide an exponential reduction in the size of the search space and identifies the 
assumptions under which this reduction is possible. The fourth section illustrates the 
use of hierarchical problem solving in the Tower of Hanoi puzzle. The last section 
describes the implementation of hierarchical problem solving in PRODIGY. 

3.1    Abstraction Hierarchies 

An abstraction hierarchy consists of a hierarchy of abstract problem spaces. This sec- 
tion first defines an abstract problem space and then defines a hierarchy of abstraction 
spaces. 

3.1.1    Models of Abstraction Spaces 

As described in the previous chapter, a problem space is composed of the legal states 
and operators. An abstract problem space is formed by simplifying a problem space. 
One approach is to drop the applicability conditions of the operators to form a relaxed 
model, and another approach is to completely remove certain conditions from the 
problem space to form a reduced model. This section defines relaxed and reduced 
models and describes the advantages of reduced models over relaxed models. 

Given an initial problem-solving domain, a problem space or model of that domain 
is defined by the states and operators. Figure 3.1 shows a picture of a simple robot- 
planning domain and the corresponding models of this domain. The initial model is 
shown at the top of the figure and consists of four states and four different operators. 
The robot can move back and forth between the two rooms and the door between 
the rooms can be opened and closed. In the initial model, the robot can only change 
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Initial Model 
Problem Domain 

Robot        \^ 

Door AB 

Room A Room B 

Relaxed Model Reduced Model 

Figure 3.1: Comparison of Relaxed and Reduced Models 

rooms if the door between the rooms is open, and the robot can open or close the 
door from either room. 

Relaxed models [Pearl, 1984] are constructed by removing preconditions of op- 
erators. This is the approach taken in ABSTRIPS, where the preconditions of the 
operators are assigned criticality values and all preconditions with criticality values 
below a certain threshold are ignored. Viewed in terms of a state-space graph, the 
number of states in a relaxed model is the same as the initial model, but the possible 
transitions between the states is increased. In the example shown in Figure 3.1, a 
relaxed model can be constructed by dropping the precondition that the door must be 
open before the robot can move between rooms. In the resulting model, the operators 
for moving between rooms are applicable even when the door is closed. 

Reduced models are constructed by removing properties (literals) from the original 
problem space. Thus, an abstract space is formed by dropping every instance of a 
particular set of literals from both the states and the operators. Also, operators that 
only achieve literals dropped from the abstract space are removed from the abstract 
space. In a reduced model of a problem space, a single abstract state corresponds to 
one or more states in the original problem space. For any pair of states in the original 
space, if there is an operator that transforms one state into another, there exists an 
abstract operator that provides a transformation between the corresponding abstract 
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states. In the case of the reduced model shown in Figure 3.1, ignoring the 'open' and 
'closed' conditions involves dropping these conditions from both the operators and 
states. Thus the 'open' and 'closed' door properties are completely removed from the 
model, reducing the four original states to the two states shown in the figure and 
eliminating the operators for opening and closing doors. 

Reduced models have a number of advantages over relaxed models. First, in a re- 
duced model conditions are dropped from the states, which can decompose the goal of 
a problem since different goal conditions may occur at different levels in the hierarchy. 
Second, since operators are dropped in a reduced model, the branching factor of the 
abstract search is reduced. Third, a reduced model is a smaller problem space with 
fewer literals and operators, which can be more concisely represented and reasoned 
about. This makes it easier to combine the use of abstraction with other types of 
problem-space learning such as explanation-based learning [Minton, 1988b], macro- 
operator learning [Korf, 1985b], or learning by analogy [Carbonell, 1986]. Fourth, 
creating a reduced model allows operators and objects that are indistinguishable at 
an abstract level to be combined into abstract operators or objects. For example, 
if there are two operators for moving an object between rooms, where one opera- 
tor involves carrying the object and the other involves pushing the object, and the 
distinctions between these operators are ignored, then they can be combined into a 
single abstract operator for moving an object between rooms. Fifth, as pointed out by 
Tenenberg [1988], performing any inferencing or theorem proving in a relaxed model 
may result in inconsistencies. The problem is that by ignoring only applicability con- 
ditions, operators can be applied in situations for which they were not intended and 
produce contradictory states. Reduced models avoid this problem by removing the 
operators and conditions that are not relevant to the current model. 

While there are advantages of reduced models over relaxed models, they are sim- 
ilar in that the same basic techniques for generating and using abstractions apply to 
either model. Relaxed and reduced models are both homomorphisms [Korf, 1980] of a 
problem space, which means that information is discarded in the process of construct- 
ing these models. As such, after a problem is solved in either type of abstract space, 
the abstract solution must be refined in the original space in order to ensure that 
the solution applies to the original problem. The remainder of this thesis assumes 
that the abstraction spaces are reduced models where the language of the abstrac- 
tion space is a subset of the language of the original problem space. However, the 
abstraction properties and the algorithms for both generating and using abstractions 
apply directly to relaxed models. 



3.1.   ABSTRACTION HIERARCHIES 29 

3.1.2    Hierarchies of Abstraction Spaces 

An ordered sequence of abstraction spaces defines an abstraction hierarchy, where 
each successive abstraction space is an abstraction of the previous one. Since an 
abstraction space is formed by removing literals from the original problem space, an 
abstraction hierarchy can be represented by assigning each literal in the domain a 
number to indicate the abstraction level of the literal. The level i abstraction space 
is identical to the original problem space, except operators and states will only refer 
to literals that have an abstraction level of i and higher. Level 0 is the original 
problem space, also called the ground space or base space. The hierarchy is ordered 
such that the most abstract space (i.e., problem space with the fewest literals) is 
placed at the top of the hierarchy, and the ground space is placed at the bottom of 
the hierarchy. For any sufficiently rich problem space, there can be many different 
abstraction hierarchies, some more useful than others. 

Formally, a fc-level abstraction hierarchy is defined by the initial problem space 
E = (L,S,0), where L, S, and O are just as in the problem-space definition in 
Chapter 2, and a function Level which assigns one of the first k non-negative integers 
to each literal in L. 

VZ € L Level(l) = i, where t € {0,1,..., k - 1} 

The function Level defines an abstract problem space for each level i, where all condi- 
tions assigned to a level below i are removed from the language, states, and operators: 

V = (Li,Si,Oi). 

Given the function Level an abstraction space E' is constructed from a problem 
space E as follows. The language Lx contains the literals in L that are in level i or 
greater. 

V = {l\(l € I) A (Level(l) > »)} 

Let M.\ : S —* S* be a state mapping function that maps a base-level state into an 
abstract state by removing literals that are not in the abstract language V. Thus, 
s* = M\{s) if and only if 

s{ = {ac|(ar € s) A (x € X*")}. 

Given the function M\, the states in S* are the abstract states that corresponds to 
the states in S. 

S1 = {Ais € S) A (,' = Mi(s))} 

Let Mx
0 : O —► O' be a operator mapping function that maps a base-level operator 

into an abstract operator by removing the literals in the preconditions, deletes, and 
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adds that are not in the abstract language L\ Thus, a' = M^a) if and only if 

a* = (P0i,D0i,AQi)A 

PQi = {x\(x € P„) A (x € £*")} A 

DQ. = {«|(a; € D«) A (a; € £*')} A 

Aai = {x\(x e Aa) A (a; € I*')}. 

Given the function M.^, the operators in O' are the abstract operators that correspond 
to the operators in O that have nonempty effects in the abstract space. 

0' = {o*|(a € 0) A (a* = A<0(a)) A (A* ± {} V D0, ^ {})} 

Consider the example robot-planning problem space and an abstraction of that 
problem space, which were described in Section 3.1.1. The definition of the ground- 
level problem space S° is shown in Table 3.1. L defines the language, S defines the four 
possible states, and O defines the three operator Schemas for the problem space. An 
abstraction of this problem space is formed by dropping all of the conditions involving 
door status. This corresponds to the following definition of the Level function: 

level((inroom roomA)) = 1, 
level ((inroom roomB)) = 1, 
level((door roomA doorAB)) = 1, 
level((door roomB doorAB)) = 1, 
level((open doorAB)) = 0, 
level((closed doorAB)) = 0. 

The resulting abstraction space E1 is shown in Table 3.2. In the abstract space, the 
abstract language L1 consists of only inroom and door conditions, the abstract states 
51 consists of the two states that correspond to the possible rooms the robot could 
be in, and the abstract operators O1 consists of the operators for moving between 
the two rooms. In practice, a problem space is usually defined by specifying only the 
operators, and an abstraction hierarchy is defined by assigning levels to each of the 
literals in the problem-space language. The language and states of a problem space 
are defined implicitly by the operators and problems to be solved. 

3.2    Hierarchical Problem Solving 

This section defines a hierarchical problem-solving method, building on the problem- 
solving definition in Section 2.2. First two-level hierarchical problem solving is de- 
fined, and then this definition is extended to multi-level hierarchical problem solving. 
This section also analyzes the completeness and correctness of this problem solving 
method. 
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£° = (Z,S,0) 

L=  {(inroom roomA)(inroom roomB) 
(door roomA doorAB)(door roomB doorAB) 
(open doorAB)(closed doorAB)} 

S=  {((inroom roomA)(open doorAB)(door roomA doorAB)(door roomB doorAB)) 
((inroom roomA)(closed doorAB)(door roomA doorAB)(door roomB doorAB)) 
((inroom roomB)(open doorAB)(door roomA doorAB)(door roomB doorAB)) 
((inroom roomB)(closed doorAB)(door roomA doorAB)(door roomB doorAB))} 

O = {(Move_Thru_Door (room-x room-y) 
(preconds (and (inroom room-x) 

(door room-x door-xy) 
(door room-y door-xy) 
(open door-xy))) 

(effects ((delete (inroom room-x)) 
(add (inroom room-y))))) 

(OpenJDoor (.door-xy) 
(preconds (and (door room-x door-xy) 

(inroom room-x) 
(closed door-xy))) 

(effects ((delete (closed door-xy)) 
(add (open door-xy))))) 

(Close_Door (door-xy) 
(preconds (and (door room-x door-xy) 

(inroom room-x) 
(open door-xy))) 

(effects ((delete (open door-xy)) 
(add (closed door-xy)))))} 

Table 3.1: Definition of an Example Problem Space 

3.2.1    Two-level Hierarchical Problem Solving 

A hierarchical problem solver is given a problem space, a problem to be solved in that 
space, and an abstraction hierarchy. In two-level problem solving there are only two 
levels to the hierarchy: the ground space and an abstraction space. The problem solver 
maps the given problem into the abstraction space (by deleting literals that are not 
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21 = (L1,S1,01) 

L1 = {(inroom roomA)(inroom roomB) 
(door roomA doorAB)(door roomB doorAB)} 

S1 = {((inroom roomA)(door roomA doorAB)(door roomB doorAB)) 
((inroom roomB)(door roomA doorAB)(door roomB doorAB))} 

Ol =  {(Move_Thru_Door (room-x room-y) 
(preconds (and (inroom room-x) 

(door room-x door-xy) 
(door room-y door-xy))) 

(effects ((delete (inroom room-x)) 
(add (inroom room-y)))))} 

Table 3.2: Definition of an Example Abstraction Space 

part of the abstraction space), solves the abstract problem, uses the abstract solution 
to form subproblems that are then solved in the ground space (by reintroducing the 
deleted literals). 

Given an abstraction space E"4, the first step is to map the original problem into 
an abstract problem. (Note that since there are only two levels in the abstraction 
hierarchy the superscript A is used to refer to terms in the abstract space.) The 
function Mf, which was defined in the previous section, is used to map the initial 
and goal states So and Sg into abstract states SQ and S£. 

S£ = Mf(S0) 

St = M}(Sa) 

The relationship between the states or operators in the ground space and states or 
operators in the abstract space is a many-to-one mapping since states or operators 
that differ in the base space may be indistinguishable in the abstract space. Figure 3.2 
shows the mapping of the initial and goal states into the corresponding abstract states, 
and the mapping of the base-level operators into the corresponding abstract operators. 

The next step is to use the problem-solving procedure V, as defined in Chapter 2, 
to find a plan HA in the abstract space that transforms the initial state SQ into final 
state S* that satisfies the goal Sg. 

nA = T>(E^,^) 
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Initial 
Stat* 

q> 
M« 

Figure 3.2: Mapping a Problem into an Abstract Problem 

The solution to the abstract problem defines a set of intermediate abstract states. 
The intermediate states can be found by decomposing the abstract plan TLA into its 
component operators and using the application function A to apply each of these 
operators to successive states starting with the initial abstract state SA. 

IiA = aA\\---\\aA 

Sf = A(aA,SA_1); l<i<n 

Since the language of the abstract space is a subset of the language of the base 
space, the intermediate abstract states can be used directly as intermediate goals in 
the base space (recall that a goal is a partial specification of a state). These goals 
define a set of subproblems that can be solved sequentially. Figure 3.3 shows the 
abstract solution and the intermediate goal states formed from the solution. 

A problem solver would then solve each of the intermediate subproblems in the 
following order.  First, a problem solver searches for a plan III that transforms the 

Figure 3.3: Using an Abstract Solution to Form Subproblems 



34 CHAPTER 3.   HIERARCHICAL PROBLEM SOLVING 

initial state into the first intermediate goal state Sj4. This is shown in Figure 3.4, 
where the specialization of the abstract state Sf is Si. State Si then serves as the 
initial state for the next subproblem. Next, a problem solver searches for a plan 
that transforms the resulting state Si into the next intermediate goal state S£. This 
process is repeated for each of the intermediate states in the abstract space up to S„. 

n, = -p(S,St_i,S,4); 1 <i<n 

S; = .4(II.-,S,_i); 1 <i<n 

The final step to produce a solution in the base space requires mapping the state S„, 
which only satisfies the abstract goal S*, into a state that satisfies the original goal 
Sg. 

nfl = p(E,sn,sfl) 

Figure 3.4: Solving the Subproblems in the Ground Space 

In solving each of the subproblems, the abstract solution constrains the possible 
operators for the final operator in each of the subproblem solutions. In particular, 
since each operator in the abstract space is an abstraction of one or more base-space 
operators, the final operator in the solution sequence of each subproblem will be a 
specialization of the corresponding abstract operator. For example, in the diagram in 
Figure 3.4, ot\ must be a specialization of af and an must be a specialization of a*. 
In general, given an abstract plan UA = aj*|| •• • ||ajj, then the following condition 
must hold for each ground-level subplan II; = Qi|| • • • ||an that achieves the abstract 
intermediate state Sf: 

af = Mi(an). 
Since the mapping of the operators in the abstract space to operators in the base 
space is a one-to-many mapping, there may be several ways to specialize the abstract 
operators. 
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The final solution to the original problem is simply the concatenation of the solu- 
tions to all of the subproblems. 

n = n1||n2||...||nn||nfl 

Figure 3.4 shows the final solution where the intermediate states in the plan must 
satisfy the intermediate abstract states, and the operators applied to reach these 
states are specializations of the intermediate abstract operators. 

Hierarchical problem solving divides a problem into subproblems to reduce the 
size of the search spaces, but it does not completely eliminate the search. To solve a 
problem in the most abstract space will require searching for a sequence of operators in 
that space. The resulting abstract solution then defines a set of subproblems. Each of 
these subproblems will require an additional search. As shown in Figure 3.5, solving 
each of these subproblems involves both selecting a specialization of the abstract 
operator and then searching for a state in which this operator can be applied. The 
general idea is to replace the initial, potentially enormous search space with many 
smaller, more constrained search spaces, as described in Section 3.3. 

a' 

a,     a,   a. 

Operator 
Specialization Subproblem Search 

K+l 

Figure 3.5: Search Space of a Subproblem 

If the problem solver is unable to solve one of the subproblems, then it must 
backtrack to consider other ways of solving previous subproblems as well as other 
ways of solving the subproblems in more abstract spaces. During problem solving, 
there will be choices of which goal to work on next, which operator to use to achieve 
the goal, and which bindings of the operator to use. Each of these choices must 
be recorded during problem solving and upon failure the problem solver will need to 
return to these choices to try the alternatives. Thus, it may be necessary to backtrack 
within a particular subproblem, across subproblems, and across abstraction levels. 
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3.2.2    Multi-Level Hierarchical Problem Solving 

Two-level hierarchical problem solving is easily extended to multiple levels. As shown 
in Figure 3.6, instead of a single abstraction space, there is a hierarchy of abstraction 
spaces. Problem solving using a hierarchy of abstraction spaces proceeds as follows. 
First, given a problem to solve in the ground space, the problem is mapped into the 
most abstract space in the hierarchy and solved in that space. Next, as in the two- 
level problem solving, the intermediate states are used to form the subproblems at 
the next level in the hierarchy. Each of these subproblems are solved and the solution 
to all of the subproblems are concatenated together to form the abstract plan at that 
level. Each of the intermediate states of the resulting abstract plan are then used to 
form subproblems at the next level. This process continues until the plan is refined 
all the way back to the ground space. 

Abstrat Space 
Level N 

Abstract 
Level 

• * 

• 

c£^£-i—-6^—Jc Ground Space (J      »Q. +Q »^$__^Q *£) 

Figure 3.6: Multi-Level Hierarchical Problem Solving 

3.2.3    Correctness and Completeness 

A problem solver V is correct if every plan produced by V is correct, and V is complete 
if, given a problem that has a solution, V is guaranteed to terminate with the solution. 

Given a correct and complete nonhierarchical problem solver V, the hierarchical 
problem solver H described in the previous section is correct, but it is only complete 
for a certain class of problems and abstraction hierarchies. This section proves the 
correctness of H, describes the class of problems for which 7i is complete, proves this 
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restricted completeness, and describes the tradeoffs in building a complete hierarchical 
problem solver. 

Theorem 3.1 (Correctness)  Given a correct problem solver V, any plan 7i pro- 
duces will solve the problem. 

Proof: Every plan produced by Ti consists of the concatenation of solutions to 
all of the subproblems in the ground space. Since the solution to each of these 
subproblems is produced by V, and V is assumed to be correct, the plans to solve the 
individual subproblems must be correct. The subproblems are concatenated together 
to produce the final plan. This resulting plan is a legal plan since the final state in the 
solution to each subproblem is used as the initial state for the following subproblem. 
The resulting plan correctly solves the given problem since the initial state of the 
first subproblem is the initial state of the given problem and the goal state of the last 
subproblem is the goal state of the given problem. □ 

Given a problem that is solvable, the hierarchical problem solver Ti is guaranteed 
to terminate with a solution if the problem is both decomposable and linearizable 
relative to the abstraction hierarchy. 

A problem is decomposable relative to the abstraction hierarchy if it can be solved 
without interleaving the goals that arise in separate subproblems during hierarchical 
problem solving. This restriction stems from the fact that the hierarchical problem 
solver takes the abstract solution and partitions it into subproblems that are solved 
separately. There is no facility for interleaving the goals that arise in the various 
subproblems. If a problem is linear, which means it can be solved without interleaving 
any of the subgoals of a problem, it is sufficient to guarantee that the problem is 
decomposable relative any abstraction hierarchy. However, this is not a necessary 
condition since a nonlinear subproblem can be solved by the nonhierarchical problem 
solver V, which is assumed to be complete. (See [Joslin and Roach, 1989] for a precise 
characterization of linear and nonlinear problems.) 

A problem is linearizable relative to an abstraction hierarchy if every conjunctive 
set of goals that arises while solving the problem can be solved in the order that 
the goals appear in the levels of the hierarchy. (The hierarchy orders the goals from 
most abstract to least abstract.) This restriction arises because for any conjunction 
of goals, the hierarchical problem solver first solves those goals in the most abstract 
space, and then those in the next space, and so on without considering all possible 
orderings of those goals. Note that this restriction only applies to those goals that 
arise as a conjunctive set of goals, either as a conjunction of top-level goals or as a 
conjunctive set of preconditions to an operator. 

Consider an example from the STRIPS robot planning domain [Fikes and Nilsson, 
1971]. In this domain a robot can move between rooms, pushing boxes and opening 
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and closing doors. An abstraction hierarchy in this domain might consist of two levels, 
where conditions dealing with the locations of boxes are dealt with at one level, and 
conditions dealing with door status are dealt with at the next level. A problem is 
decomposable relative to this abstraction hierarchy if all the door-status goals can be 
solved independently. A problem is linearizable relative to this abstraction hierarchy 
if a set of goals can be solved by first solving the goals involving box location and then 
solving the goals involving door status. If the problem solver was given a problem 
consisting of four goals, two goals involving box location and two goals involving door 
status, it would solve the box location goals first, considering either ordering of these 
two goals, and then solve the door status goals next, considering any order of these 
two goals. 

Theorem 3.2 (Completeness) Given a complete problem solver V, the hierarchi- 
cal problem solver ti is complete for any problem that is both decomposable and lin- 
earizable relative to the given abstraction hierarchy, 

Proof: Since a complete problem solver V is used to solve any subproblem within 
an abstraction level, any incompleteness in 7i could only be due to the partitioning 
and ordering of the subproblems that arise during problem solving. Given that a 
problem is decomposable, the partitioning of a problem into subproblems would not 
prevent the problem from being solved. Similarly, since the problem is linearizable, 
then any conjunction of goals can be solved in the order imposed by the hierarchy. 
Thus, the partitioning and ordering imposed by % could not prevent a problem from 
being solved. Ü 

The decomposability restriction on a problem is no stronger than the usual as- 
sumptions that are made to show that the complexity of a problem can be reduced by 
identifying intermediate states [Minsky, 1963, Simon, 1977]. These analyses always 
assume that the problem can be divided into a number of smaller subproblems. As 
shown in the next section, dividing up the problem into independent subproblems is 
central to reducing the complexity of a problem. In addition, the decomposability 
restriction is not an issue if the single-level problem solver V is linear. A linear prob- 
lem solver can only solve the class of linear problems. In this case, the only added 
restriction imposed by the hierarchical problem solver "H is that the problems are 
linearizable relative to the abstraction hierarchy. This simply follows from the fact 
that if a problem is linear then it is decomposable. 

The linearizability restriction on problems is also a fairly weak restriction. The 
next chapter describes an algorithm for generating abstractions, and the algorithm 
guarantees that the goals at one level in the hierarchy could not possibly violate 
the conditions at a more abstract level. The only cases where a problem might not 
be linearizable results from indirect goal interactions, where a goal for achieving a 
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condition at one level in the hierarchy deletes some condition needed to achieve a 
goal at a lower level in the hierarchy, and this needed condition cannot be reachieved. 
While this type of interaction can arise in practice, it did not prevent any problems 
from being solved in any of the domains explored in this thesis. 

The hierarchical problem solver described in this chapter could be made com- 
plete. This would require a more flexible refinement mechanism that allowed the 
steps needed to refine a plan to be inserted anywhere in the abstract plan. Given this 
more general refinement mechanism, a problem could no longer be decomposed into 
subproblems, but the use of abstraction could still focus the problem solver on the 
more difficult aspects of a problem first. The disadvantage of this approach is that 
the worst-case complexity of hierarchical problem solver will be increased because the 
problems can no longer be decomposed into smaller independent subproblems. 

3.3    Analysis of the Search Reduction 

This section presents a complexity analysis of single-level problem solving, two-level 
hierarchical problem solving, and multi-level hierarchical problem solving [Knoblock, 
1991]. The last part of this section identifies under precisely what assumptions hi- 
erarchical problem solving can reduce an exponential search to a linear one. Since 
the size of the search spaces are potentially infinite, the analysis assumes the use of 
a brute-force search procedure that is bounded by the length of the solution (e.g., 
depth-first iterative-deepening [Korf, 1985a]). 

The analysis is similar to the analysis of abstraction planning with macros by Korf 
[1987]. Korf showed that the use of a hierarchy of macros can reduce an exponen- 
tial search to a linear one. However, Korf's analysis applies to abstraction planning 
with macros and not to hierarchical problem solving because it makes a number of 
assumptions that do not hold for hierarchical problem solving. The most significant 
assumption that prevents Korf's analysis from applying to hierarchical problem solv- 
ing is that it assumes that when the abstract problem is solved, the original problem 
is solved. The difficult part of solving a problem using macros is finding a path from 
a state in the base space to a state in the abstract space. Once a path to the abstract 
states has been found, the problem can be completely solved in the macro space. In 
contrast, using hierarchical problem solving it is straightforward to map from a state 
in the base space to a state in the abstract space. However, once the problem has 
been solved in the abstract space, the abstract solution must be refined into a solution 
in the base space. 
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3.3.1 Single-Level Problem Solving 

For single-level problem solving, if a problem has a solution of length / and the search 
space has a branching factor b, then in the worst-case the size of the search space is 
£J=1 b\ Thus, the worst-case complexity of this problem is 0(6'). 

3.3.2 Two-Level Hierarchical Problem Solving 

Let k be the ratio of the solution length in the base space to the solution length in 
the abstract space. Thus, ^ is the solution length in the abstract space. Since each 
operator in the abstract space corresponds to one or more operators in the ground 
space, the branching factor of the abstract space is bounded by the branching factor 
of the ground space, b. To simplify the analysis, b is used as the branching factor 
throughout. The size of the search tree in the abstract space is H,=i b\ which is 
0(6*). In addition, the analysis must include the use of this abstract solution to 
solve the original problem. 

The abstract solution defines £ subproblems. The size of each problem is the 
number of steps (solution length) in the base space required to transform an initial 
state Si into a goal state S,+i, which is represented as d(Si,Si+\). Thus, the search 
in the base space is: 

d(s0,s1)        «*(S,ä) d(5i-i,5P 
£   6-+   £   tf + -+      £      b\ (3.1) 
t'=l «=1 1=1 

which is 0(rbdm"), where 

dmax =     max    d(Si,Si+i). (3.2) 
o<t<4--i 'i»i i 

In the ideal case, the abstract solution will divide the problem into subproblems of 
equal size, and the length of the final solution using abstraction will equal the length 
of the solution without abstraction. In this case, the abstract solution divides the 
problem into £ subproblems of length k. 

bdm„ = brh = bk (3.3) 

Assuming that the planner can first solve the abstract problem and then solve each of 
the problems in the base space without backtracking across problems, then the size 
of the space searched in the worst case is the sum of the search spaces for each of the 
problems. 

X>' + TX>' (3-4) 
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The complexity of this search is: 0(b* + jr&fc). The high-order term is minimized 
when £ = k, which occurs when k = \fl. Thus, when k = \/7, the complexity is 
0(yl ir*), compared to the original complexity of 0(bl). 

3.3.3    Multi-Level Hierarchical Problem Solving 

Korf [1987] showed that a hierarchy of macro spaces can reduce the expected search 
time from 0(s) to 0(log s), where 5 is the size of the search space. This section proves 
an analogous result - that multi-level hierarchical problem solving can reduce the size 
of the search space for a problem of length / from 0(bl) to 0(1), where 6' is the size 
of the search space. 

In general, the size of the search space with n levels (where the ratio between the 
levels is k) is: 

E^ + pbE^pbE^ + pbE^ + --- + ^E^       (3-5) 

The first term in the formula accounts for the search in the most abstract space. 
Each successive term accounts for the search in successive abstraction spaces. Thus, 
after solving the first problem, there are p^rr subproblems that will have to be solved 
at the next level. Each of these problems are of size k since k is the ratio of the 
solution lengths between adjacent abstraction levels. At the next level there are 
^2 subproblems (fcp^r) each of size k, and so on. In the final level there are j 
subproblems each of size k. The final solution will therefore be of length j^k = I. 

The maximum reduction in search can be obtained by setting the number of levels 
n to logfc(/), where the base of the logarithm is the ratio between levels it. Substituting 
logfc(Z) for n in Formula 3.5 produces the following formula: 

J2 v + k £ V + k2J2 V + k3J2bi + --. + ifclo**(')-i J2 V (3-6) 
t'=l t'=l t=l «=1 t=l 

From Formula 3.6, it follows that the complexity of the search is: 

0((1 + k + k2 + ■ ■ ■ + Jfclos*(')-i)6fc). (3.7) 

The standard summation formula for a finite geometric series with n terms, where 
each term increases by a factor of k, is: 

Un+l _ I 

1 + k + k2 + ■ ■ • + kn = \ (3.8) 
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Given Formula 3.8, it follows that the complexity of Formula 3.7 is 0(j^bk): 

(1 + k + k2 + • • • + Jtlo**<')-i)&* = V = T-4&*. (3.9) 
fc — 1 k — 1 

Since 6 and Ä; are assumed to be constant for a given problem space and abstraction 
hierarchy, the complexity of the entire search space is 0(1). 

The analysis above shows that hierarchical problem solving can reduce the size 
of the search space from 0(bl) to 0(1). This analysis assumes the best-case for the 
distribution and independence of problems in the hierarchy, but assumes the worst- 
case for search in each of the subproblems. The best-case assumptions are reviewed 
below. In practice, the size of the actual search space is between the two extremes. 

3.3.4    Assumptions of the Analysis 

1. The number of abstraction levels is log^. of the solution length. This assumption 
argues for problem-specific abstraction hierarchies over domain-specific hierar- 
chies since the solution length of problems within a given domain can vary 
greatly from problem to problem. 

2. The ratio between the levels is the base of the logarithm, k. A problem should 
be divided such that the length of the solution at each level increases linearly. 

3. Problems are decomposed into subproblems that are all of equal size. The analy- 
sis assumes that the size of all the subproblems is the same in order to minimize 
bdm". If all the other assumptions hold, the complexity of the search will be 
the complexity of the largest subproblem in the search. For example, if b is 
constant and the largest subproblem is 62, hierarchical problem solving would 
still reduce the search from 0(6') to 0(bi). 

4. The solutions produced by the hierarchical problem solver are the shortest ones 
possible. If a problem has a solution of length /, then the length of the solution 
produced using hierarchical problem solving must also be /, or at least within 
a constant of /. 

5. There is only backtracking within subproblems. This requires that an abstraction 
level can be refined into a solution at lower levels and that the solution to 
•each of the subproblems within an abstraction level* will not prevent any of the 
remaining subproblems at the same level from being solved. 

The assumptions above are sufficient to produce an exponential-to-linear reduction 
in the size of the search space. The essence of the assumptions is that the abstraction 
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divides the problem into 0(1) constant size subproblems that can be solved serially. 
Of course, these assumptions are unlikely to hold in many domains and, if they do 
hold, it may not be possible to determine that fact a priori. For example, determining 
whether an abstract solution can be refined without backtracking requires determining 
whether plans exist to solve the subproblems, which in general will require solving 
the subproblems. 

Consider the effect of weakening the various assumptions above. Assumptions 1, 
2, and 3 divide up the problem into the optimal number of optimal size subproblems 
to reduce the complexity of the search. If any of these assumptions are weakened, 
the resulting complexity will depend on the complexity of the largest subproblem 
and the total number of subproblems. Thus, if the number of subproblems and the 
complexity of the largest subproblem are not much smaller than the complexity of 
the original problem, the abstractions will not provide a significant benefit. 

Assumption 4 requires that the final solution is the shortest one. This assumption 
is needed to bound the potentially infinite search spaces. Producing optimal solu- 
tions usually requires an admissible search (e.g., breadth-first or depth-first iterative 
deepening) and with hierarchical problem solving there is no guarantee that the final 
solution will be optimal, only that the solution to the individual subproblems are 
optimal. The analysis holds as long as the final solution is within a constant of the 
optimal solution. 

Assumption 5 requires that the problem can be broken up into subproblems that 
can be solved in order without backtracking. If this assumption does not hold, then 
some or all of the benefit of the abstraction could be lost since the worst-case com- 
plexity is no longer the sum of the subproblems, but the product. Note, however, 
that the structure of hierarchical problem solving can minimize the impact of back- 
tracking in several ways. First, on backtracking across abstraction levels, it is not 
necessary to backtrack through every choice point in an abstract plan, but only those 
choice points in an abstract plan that preceded the failure point in the refinement of 
the abstract plan. Second, when refining the abstract plan after backtracking across 
levels, the detailed solution to the parts of the problem that precede the modification 
to the abstract plan remain valid and do not need to be replanned. Section 3.5.5 
provides a detailed description of these two techniques. 

3.4    Tower of Hanoi Example 

This section describes an abstraction hierarchy for the Tower of Hanoi, explains how 
hierarchical problem solving can-be used to solve this problem, and then shows that 
this approach reduces the size of the search space from exponential to linear in the 
solution length for this problem. 
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Consider the three-disk Tower of Hanoi puzzle, which was described in Section 2.2. 
A good abstraction of the problem, which was first identified by Korf [1980], is to 
separate the disks into different abstraction levels. The resulting abstraction hierarchy 
is shown in Figure 3.7, where the most abstract space contains only the largest disk, 
the next abstraction space contains the largest and medium size disk, and the ground 
space contains all three disks. 

Level  0 

ALL 

Level 2 (on diskC pegl) 

±1 1 (on diskC 

(on diskC 

peg2) 

peg3) 

Level 1 (on diskC pegl) (on diskB pegl) 

Al 1 
(on diskC peg2) (on diskB peg2) 

(on diskC peg3) (on diskB peg3) 

(on diskC pegl)      (on diskB pegl) (on diskA pegl) 

(on diskC peg2)      (on diskB peg2) (on diskA peg2) 

(on diskC peg3)      (on diskB peg3) (on diskA peg3) 

Figure 3.7: Abstraction Hierarchy for the Tower of Hanoi 

Each abstraction space is formed by dropping all the literals that are not in the 
given level of the hierarchy from the initial state, goal, and operators. Table 3.3 
shows, for an example initial state, goal, and operator, the conditions at each level 
of abstraction. Level 0 shows the initial specification, level 1 shows the conditions 
remaining after removing the smallest disk, and level 2 shows the conditions after 
removing both the smallest and medium-sized disks. 

The abstraction hierarchy for the Tower of Hanoi can be used for hierarchical 

Move DiskC From Pegl to Peg3 
Initial State Goal State Preconds         Effects 

Level 2 (on diskC pegl) (on diskC peg3) (on diskC pegl) ->(on diskC pegl) 

(on diskC peg3) 
Level 1 (on diskC pegl) (on diskC peg3) (on diskC pegl) -■(on diskC pegl) 

(on diskB pegl) (on diskB peg3) -•(on diskB pegl) 
-■(on diskB peg3) 

(on diskC peg3) 

Level 0 (on diskC pegl) (on diskC peg3) (on diskC pegl) -i(on diskC pegl) 
(on diskB pegl) (on diskB peg3) -■(on diskB pegl) (on diskC peg3) 
(on diskA pegl) (on diskA peg3) -■(on diskB peg3) 

->(on diskA pegl) 
-■(on diskA peg3) 

Table 3.3: Abstractions of an Initial State, Goal, and Operator 
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problem solving. The first step is to map the initial problem into the corresponding 
abstract problems. This is show in Figure 3.8, where the initial and goal states 
are mapped into initial and goal states at each level of abstraction. In addition, 
the operators of the initial problem space are mapped into abstract operators at each 
level. In the Tower of Hanoi the abstraction of the operators is a one-to-one mapping, 
where some of the operators are simply not relevant to a given abstraction level. 

*' 

4-1 1 
.-* 

|AI 1 

* * 

Jt 

411 

u4 
1 14 

1 1-4 

Figure 3.8: Mapping a Problem into an Abstract Problem 

The next step is to solve the problem in the most abstract space. This is shown in 
Figure 3.9, where there is simply a one step plan that moves the largest disk (diskC) 
from pegl to peg3. As shown in the figure this creates two new subproblems at 
the next level, where the first subproblem is to reach the state where the abstract 
operator can be applied, and the second subproblem is to reach the goal state. 

MoveC-1-3 

ill 
7 

U= 

\ 

Figure 3.9: Solving an Abstract Problem 

This process is continued by solving each of the subproblems at the second level 
and using the solutions to the subproblems to guide the search in the base level. 
Figure 3.10 shows the resulting three-step plan at the second level. For each operator 
in the abstract plan, a specialization of that operator must be used in any refinement 
of that abstract plan. In this case, MoveC-1-3 is used in the second step since it is the 
only specialization of the corresponding abstract operator. Thus, only two additional 
steps were inserted at this abstraction level. 

The final step in the hierarchical problem solving is to solve each of the subprob- 
lems in the base space. This produces the seven-step solution shown in Figure 3.11, 
where four additional steps were inserted at this level. 
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Figure 3.10: Solving the Subproblems at the Next Abstraction Level 
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Figure 3.11: Solving the Subproblems in the Ground Space 

This abstraction of the Tower of Hanoi is ideal in the sense that it produces a set 
of abstraction spaces that meet all of the assumptions listed in Section 3.3.4. 

1. The number of abstraction levels is log2(/), where / is the length of the solu- 
tion. For a n-disk problem the solution length / is 2n — 1, and the number of 
abstraction levels is n, which is 0(log2(/)). 

2. The ratio between the levels is the base of the logarithm.. If the number of 
steps at a given level is n, then the number of steps at the next level is In + 1. 
Thus, the base of the logarithm is 2, and the ratio between the levels is 0(2). 

3. The problem is decomposed into subproblems that are all of equal size. These 
subproblems are effectively all of size one, since each subproblem requires in- 
serting one additional step. 

4. Using an admissible search strategy, the hierarchical problem solver produces 
the shortest solution. 

5. There is only backtracking within a subproblem. The subproblems is this do- 
main can always be solved in order without backtracking across subproblems or 
across abstraction levels. 
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Since these assumptions are sufficient to reduce the size of the search space from 
exponential to linear in the length of the solution, it follows that the hierarchical 
problem solving produces such a reduction for the Tower of Hanoi. 

An more intuitive explanation for this search reduction is as follows. In the original 
problem the size of the search space is 0(bl), where b is the branching factor, and I 
is the length of the solution. The abstraction hierarchy divides up the problem into / 
subproblems of equal size that -can be solved serially./Each step;in the final solution / 
will correspond to a subproblem in hierarchical problem solving, so the number of 
subproblems is /. Using an admissible search procedure, each subproblem will be 
solved in one or two steps. In those subproblems that require two steps, the second 
step is simply a specialization of the corresponding abstract step. Since each disk 
can be moved from one of two places, the branching factor is two. Thus, the size 
of each subproblem is 21 = 2, so the entire search is bounded by 21, which is 0(1). 
Consequently, hierarchical problem solving reduces the search space in this domain 
from 0(bl) to 0(1). 

3.5    Hierarchical Problem Solving in PRODIGY 

This section describes an extended version of PRODIGY that performs hierarchical 
problem solving. The extensions to PRODIGY are straightforward and are based on 
the formalization of hierarchical problem solving described earlier in this chapter. 

3.5.1    Architecture 
The hierarchical problem solver, which will be referred to as Hierarchical PRODIGY, 
is shown in Figure 3.12. The problem solver is given the operators that define a 
problem space, a problem in that problem space, and an abstraction hierarchy to 
be used to solve the problem. The nonhierarchical version of PRODIGY is employed 
as a subroutine, where the hierarchical problem solver selects problem spaces and 
problems for PRODIGY to solve. 

Hierarchical PRODIGY uses the abstraction hierarchy to form the problem spaces 
for each level of problem solving. The system first maps the given problem into the 
most abstract space and then gives this problem to PRODIGY to solve. If the problem 
is solvable, PRODIGY returns a solution, which is then used to construct a number of 
subproblems to be solved at the next level in the abstraction hierarchy. PRODIGY is. 
given each of these subproblems to solve and this process is repeated until the plan is 
refined into the ground space. If PRODIGY fails to find a solution to any subproblem, 
the hierarchical problem solver backtracks through the relevant unexplored search 
paths (e.g., alternative solutions to the abstract problem). 
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Figure 3.12: Hierarchical Problem-Solving Architecture 

3.5.2    Representing Abstraction Spaces 

To solve a problem in an abstract space requires mapping both the original problem 
and problem space into a corresponding abstract problem and abstract problem space. 
As described earlier, a problem is defined by the initial and goal states, and a problem 
space is defined by the operators for a domain. Given the abstraction hierarchy, which 
specifies the set of literals that comprise each abstract space, a given problem can 
be mapped into any level of the hierarchy simply by dropping all of the conditions 
from the initial state and goal that are not part of that level. Similarly, an abstract 
problem space can be constructed for each level of the hierarchy by dropping the 
literals not in the given abstract level from the preconditions and effects of all the 
operators. 

Consider an example from the machine-shop process planning and scheduling do- 
main described in Section 2.3. One possible abstraction of this domain is to separate 
the process planning from the scheduling by considering only the conditions relevant 
to planning the operations and ignore the conditions related to scheduling. In the 
case of the scheduling example, the abstract problem is shown in Table 3.4, where the 
boxed conditions are dropped in the abstract space. The abstract goal is the same as 
the original goal since the scheduling is an implicit part of performing an operation. 
However, the initial state would be simplified as shown, where conditions related to 
the scheduling are removed. 

To form an abstract problem space, all the conditions related to scheduling would 
be removed from the set of operators. Table 3.5 shows the resulting turn operator, 
where the boxed conditions would be dropped from the operator in the abstract space. 

Since the number of abstraction levels can be quite large and it may be necessary 
to backtrack across abstraction levels, it may be necessary to switch problem spaces 
frequently. To make this efficient, Hierarchical PRODIGY does not construct an explicit 
set of abstract operators.  Instead, the system dynamically abstracts the operators 
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Goal:    (and (shape part-a cylindrical) 
(surface-condition part-a polished)) 

Initial State: ((shape part-a undetermined) 
(temperature part-a cold) 
(is-part part-a) 
(is-part part-b) 
(is-part part-c) 
(last-scheduled part-a timeO) 

(scheduled part-b lathe timel) 

(scheduled part-b polisher time2) 

(scheduled part-c roller timel) ) 

Table 3.4: Abstract Problem in the Machine-Shop Domain 

(TURN (.part time) 
(preconditions 

(and (is-part part) 
(last-scheduled part prev-time) 

(later time prev-time) 

(idle lathe time) )) 
(effects 

(delete (shape part old-shape)) 
(delete (surface-condition part old-condition)) 
(delete (painted part old-paint)) 
(delete (last-scheduled part prev-time)) 

(add (surface-condition part rough)) 
(add (shape part cylindrical)) 
(add (last-scheduled part time)) 

(add (scheduled part lathe time)) )) 

Table 3.5: Abstract Operator in the Machine-Shop Domain 

during problem solving. At any given time, the system has a list of the literals that 
are relevant to the given abstraction level. When the system attempts to match the 
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preconditions of an operator, it only considers those preconditions that are relevant 
to the given level. Similarly, when the system applies an operator, only those effects 
that are relevant are applied to the state. This eliminates the need to maintain an 
explicit set of abstract operators for each abstraction level. 

As described in Section 2.3.4, PRODIGY employs a set of control-rules to guide 
the search process. Mapping control rules into an abstract space cannot be done by 
simply dropping the conditions that are not relevant in that space. The problem is 
that the selection and rejection control rules are assumed to be correct and, unlike 
operators, the problem solver does not backtrack over the decisions made by these 
control rules.1 Simply dropping conditions from the control rules could result in overly 
general rules that apply in situations for which they were not intended. 

To maintain the correctness of the control rules, they are only applied at a level 
in the abstraction hierarchy in which all the conditions of the original control rule 
are contained within the given problem space. The control rules are partitioned into 
separate abstraction spaces such that each rule is only applied in the most abstract 
space in which all the conditions of the rule are relevant. Once a rule is applied at 
a given level, it need not be considered at any lower levels since the abstractions 
used by the problem solver have the ordered monotonicity property and this property 
guarantees that a goal that arises at one level cannot arise at a lower level. If a control 
rule is not specific to a particular goal condition, it is applied at every abstraction 
level. The partitioning of the control rules is done before problem solving begins, 
where each control rule is associated with a particular abstraction level (unless the 
given rule should be applied at every level). 

By representing the abstract operators and control knowledge implicitly, Hierar- 
chical PRODIGY makes the switching of abstraction levels a no-cost operation. The 
system can change to a new level or backtrack across levels frequently without the 
overhead of constructing a new set of operators and control rules. 

3.5.3    Producing an Abstract Plan 

The first step in hierarchical problem solving is to produce an abstract plan. To do 
so Hierarchical PRODIGY forms the abstract initial and goal states, sets the current 
abstraction level to the most abstract level in the hierarchy, and then hands the 
abstract problem off to PRODIGY to solve. PRODIGY finds a solution to this problem 
and returns both the solution and the complete problem-solving trace, which can 
later be used to backtrack efficiently. 

1 Since the problem solver does backtrack over preference rules, the selection and rejection control 
rules could be changed to preferences rules, allowing the control rules to serve as heuristics in the 
more abstract levels. This is not done in the current implementation. 



3.5.  HIERARCHICAL PROBLEM SOLVING IN PRODIGY 51 

Consider the effect of abstraction on the example problem shown in Figure 2.4. 
The problem is to produce a plan to make a part cylindrical and polished. In the 
original search space, the mill operation, which makes an part cylindrical, is consid- 
ered first at time-2, but this prevents the part from being polished at a later time. 
The system then considered milling the part at later times, but of course they fail 
for the same reason. Using the abstraction of the problem space that ignores the 
scheduling of the parts, there are ho times, so PRODIGY will first try millrfind that it 
fails because the part cannot be polished, and then try turning the part on the lathe. 
The system produces the abstract plan shown in Figure 3.13, which consists of a turn 
operation, a check to make sure the part can be clamped to the polisher, and then a 
polish operation. The use of the abstraction separates the process planning from the 
scheduling task, and thus gains efficiency by eliminating unnecessary backtracking in 
the ground space. 

©turn            /^""■"N.is-clampable/    X      polish        /T\  -Q—^^j ^ 
Figure 3.13: Abstract Solution in the Machine-Shop Domain 

3.5.4    Refining an Abstract Plan 

Once the system finds an abstract solution, that solution must then be refined through 
each of the successively more detailed abstraction levels. The abstract solution defines 
a sequence of subproblems, where each pair of adjacent intermediate states from the 
abstract solution forms the initial and goal states for a subproblem at the next level. 
The problems are solved in order since the final state that satisfies the goal of each 
subproblem becomes the initial state for the next problem. In addition, the choice of 
operators used to achieve each intermediate state in the abstract level constrains the 
choice of operators used to achieve the corresponding goal at the next level. 

Returning to the example above, the problem is to take the abstract plan in 
Figure 3.13 and turn it into a plan that solves the problem in the ground space. 
Since there are three operations in that plan, Hierarchical PRODIGY generates three 
subproblems that are handed off to PRODIGY to solve. Each subproblem simply 
requires determining when to schedule the turn, is-clampable, and polish operations 
and checking thatHhe required machines and parts are available at the selected times. 
The resulting refinement of the abstract plan is shown in Figure 3.14. 
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is-claxnpable 

is-clampable 
time3 

Figure 3.14: Refinement of an Abstract Solution 

3.5.5    Hierarchical Backtracking 

In addition to backtracking within a subproblem, which is taken care of by the back- 
tracking mechanism within PRODIGY, it may also be necessary to backtrack across 
subproblems and across abstraction levels. The backtracking across subproblems and 
across abstraction levels, which I call hierarchical backtracking, exploits the structure 
of hierarchical problem solving to implement a simple form of dependency-directed 
backtracking [Stallman and Sussman, 1977] and to avoid replanning when possible. 

Hierarchical backtracking avoids backtracking to choices in the search space that 
could not be relevant to a problem solving failure. Given an abstract plan, a hierar- 
chical problem solver refines this plan by expanding each of the steps in the abstract 
plan. If a step in this abstract plan cannot be refined and the problem solver must 
backtrack, it can ignore any choice points in the abstract plan that occur later in 
the abstract plan than the step that could not be refined. Completeness can be 
maintained without backtracking to all of these choice points since they occur after 
the failure point and could not affect the ability of the problem solver to solve the 
problem. 

In the example shown in Figure 3.14, consider what would happen to the abstract 
plan if the turn operator selected in the abstract space could not be refined in the 
ground space. This might occur if the machine was in use during the entire schedule. 
After trying any choice points earlier in the problem-solving trace at the level in which 
the failure occurred, the problem solver can backtrack directly to the turn operation 
in the abstract plan without considering other ways of polishing the part. This is 
illustrated in Figure 3.15, where the choice points beyond the selection of the turn 
operation need not be considered for backtracking. 

Hierarchical backtracking also avoids unnecessary replanning of the parts of a 
problem that have not changed during backtracking. When it is necessary to back- 
track across abstraction levels because a particular step in a plan cannot be achieved, 
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Figure 3.15: Hierarchical Backtracking 

if steps earlier in the abstract plan have not changed, then any refinement of those 
steps can be retained. 

Returning to the example, if the problem solver had found that the polish opera- 
tion could not be refined, the problem solver would have to backtrack to the selection 
of polish in the abstract plan and solve the problem in a different way. For example, 
it might be possible to use the grinder instead of the polisher. After this step in the 
abstract plan is changed, then the plan must be refined. However, it may be possible 
to reuse much of the work already done to refine the abstract plan. In particular, the 
refinement of the steps before polish can be retained and only the refinement of the 
new grind operator needs to be considered. This is illustrated in Figure 3.16, where 
the part of the plan shown in gray can be reused and only the refinement of the plan 
after the change needs to be replanned. 

Hierarchical PRODIGY can backtrack efficiently when necessary by maintaining the 
problem-solving traces from each of the solved subproblems, which contain the choice 

Figure 3.16: Hierarchical Refinement 
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points that have not been explored. Each of the individual traces for the subproblems 
are connected with the appropriate links so that backtracking and replanning can 
be done efficiently. The amount of space required to maintain these links is small 
compared to the size of the overall search tree. 

3.6    Discussion 

This chapter presented an approach to hierarchical problem solving, showed that this 
method could provide an exponential-to-linear reduction in search, and described the 
implementation of hierarchical problem solving in PRODIGY. The chapter defined 
abstraction spaces and hierarchies, but did not describe what makes one abstraction 
better than another. In practice, the choice of an abstraction hierarchy for a problem 
is critical in determining the effectiveness of hierarchical problem solving. A hierar- 
chical problem solver uses plans produced at each level of abstraction to constrain 
the search at the next level of detail. However, these constraints only force the final 
plan to go through certain intermediate states and do not actually constrain how 
much work is done between these states. There is nothing in the problem solving 
method that prevents the refinement of one part of the abstract plan from undoing 
the conditions that were achieved in another part of the abstract plan. Eventually 
these conditions will have to be reachieved, but this could result in more work than if 
no abstraction were used. The next chapter addresses the issue of what makes a good 
abstraction for problem solving and presents a method for automatically generating 
good abstractions. 



Chapter 4 

Generating Abstractions 

The previous chapter described how an abstraction hierarchy can be used for problem 
solving and showed that the use of abstraction can provide a significant reduction in 
search. However, several important questions have yet to be addressed: What are the 
characteristics of a useful abstraction? How do we find useful abstraction hierarchies? 

This chapter identifies properties of an effective abstraction hierarchy and presents 
an approach for automatically generating such hierarchies. The chapter first identi- 
fies several properties of the relationship between a problem space and one or more 
abstractions of a problem space, then it gives the basic algorithms for generating hier- 
archies which satisfy these properties, next it uses the Tower of Hanoi as an example 
to illustrate the basic approach, and lastly, it describes the implementation of these 
algorithms in ALPINE. 

4.1     Properties of Abstraction Hierarchies 

In order to generate useful abstraction spaces, it is important to understand how 
search at the abstract levels constrains search at the ground level. This section first 
reviews the upward and downward solution properties [Tenenberg, 1988], which relate 
a problem space to the abstractions of the problem space. While both properties are 
useful, the downward solution property is too strong to require that it hold for every 
abstraction. The section then presents two weaker properties, the monotonicity and 
ordered monotonicity properties, which can be required of an abstraction hierarchy. 
These properties are first described informally and then defined formally.1 Along 
with these definitions, this section provides restrictions on the possible abstraction 

xThe properties and algorithms described in this section are my own [Knoblock, 1990c, Knoblock, 
1990b], but the formal definitions in this section were joint work with Josh Tenenberg and Qiang 
Yang and are also described in [Knoblock et al., 1990, Knoblock et a/., 1991b]. 

55 
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hierarchies that are sufficient to guarantee these properties. These restrictions are 
used in the following section as the basis of an algorithm for automatically generating 
abstraction hierarchies that satisfy the properties. 

4.1.1    Informal Description 

Tenenberg[l988] identified theupward and downward solution properties, which relate 
a problem space to an abstract space. The upward solution property is defined as 
follows: 

Upward Solution Property: the existence of a ground-level solution implies the 
existence of an abstract-level solution. 

Since any solution at the more constrained ground level will also be a solution in any 
of the less constrained models, it is clear that an abstraction space will exhibit the 
upward solution property. The contrapositive of this property is the downward failure 
property [Weld and Addanki, 1990], which states that if there is no solution in the 
abstract space, then there is no solution in the ground space. This property is useful 
for determining efficiently that a problem is unsolvable since only the abstract space 
needs to be searched to prove unsolvability. 

The inverse of the upward solution property is the downward solution property, 
which is defined as follows: 

Downward Solution Property: the existence of an abstract-level solution implies 
the existence of a ground-level solution. 

Unfortunately, there are few abstraction spaces for which the downward solution 
property will hold. Since an abstraction space is formed by dropping conditions from 
the problem space, information is lost and operators in an abstract space can apply 
in situations in which they would not apply in the original space. In general, using 
an abstraction space formed by dropping information it is impossible to guarantee 
this property. The same problem arises in the use of abstraction in theorem proving, 
where it is called the false proof problem [Plaisted, 1981, Giunchiglia and Walsh, 
1990]. 

Since the downward solution property does not hold in general, there is no guar- 
antee that a refinement of the abstract solution exists. To make matters worse, there 
are a potentially infinite number of possible refinements of each abstract plan. In 
general, a refinement of an abstract solution simply requires inserting additional op- 
erators to achieve the conditions ignored at a more abstract level. There is nothing 
to prevent the added operators from undoing the conditions that were achieved in 
the abstract level and then reachieving these conditions. The result could be that the 
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problem effectively gets re-solved at each level of abstraction. As Tenenberg[l988, 
p.75] points out, if the operators in a domain are invertible, then there is no clear 
criterion for failure in specializing a plan, and a planner could specialize a plan ad 
infinitum simply by inserting increasingly longer solutions between the steps of the 
abstract plan. 

Since the downward solution property is too strong to- guarantee,, this section 
defines a weaker property that constrains the refinement of an abstract -solution. 
This property, called the monotonicity property, is defined as follows: 

Monotonicity Property: the existence of a ground-level solution implies the exis- 
tence of an abstract-level solution that can be refined into a ground-level solution 
while leaving the literals established in the abstract plan unchanged. 

The monotonicity property states that if a solution exists it can be found without 
modifying an abstract plan in the process of refining that plan. This property captures 
the idea that an abstract solution should serve as an outline to a ground solution and 
thus should not be modified in the refinement process. 

The monotonicity property is useful because it provides a criterion for backtrack- 
ing that does not sacrifice completeness. Whenever a problem solver would undo a 
literal established in an abstract plan while refining the plan, the system can back- 
track to a more abstract level instead since the property states that if a problem 
is solvable, an abstract solution exists that can be refined leaving the abstract plan 
unchanged. This imposes a strong constraint on how an abstract plan is refined at a 
lower level. Thus, given an abstraction it provides an approach for using the abstrac- 
tion space more effectively. In fact, Yang and Tenenberg [1990] designed a nonlinear, 
least-commitment problem solver that uses the monotonicity property to constrain 
the search for a refinement of an abstract plan. While the property is useful for con- 
straining the refinement process, it is still rather weak. The next section proves that 
every abstraction space has this property. As such, it does not provide a criterion for 
generating useful abstractions. 

A restriction of the monotonicity property, called the ordered monotonicity prop- 
erty, does provide a useful criterion for generating abstraction spaces. This property 
is defined as follows: 

Ordered Monotonicity Property: Every refinement of an abstract plan leaves all 
the literals that comprise the abstract space unchanged. 

The ordered monotonicity property is more restrictive than the monotonicity property 
because it requires that not only does there exist a refinement of an abstract plan that 
leaves the literals in the abstract plan unchanged, but every refinement of an abstract 
plan leaves all the literals in the abstract space unchanged.    Thus, the property 
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partitions the problem space such that a plan for achieving the literals at one level 
will not interact with the literals in a more abstract level. The ordered monotonicity 
property is useful because it captures a large class of useful abstractions, and ordered 
monotonic abstractions can be generated from just the initial definition of a problem 
space. 

The ordered monotonicity property requires that every refinement leaves the liter- 
als in an abstract space unchanged. One way to construct hierarchies of abstraction 
spaces that have this property is to partition the literals of a problem space into levels 
such that any plan to achieve a literal at one level will not interact with literals in 
a more abstract level. Which literals will potentially interact with other literals can 
be determined from the operators that define a problem space. A set of constraints 
can be extracted from the operators that require those literals that could possibly 
be changed in the process of achieving some other literal to be placed lower or at 
the same level in the abstraction hierarchy. This set of constraints is sufficient to 
guarantee the ordered monotonicity property. 

Since the interactions between literals depend on the problem, the usefulness of 
a given abstraction hierarchy not only varies from one domain to another, but also 
from one problem to another. Thus, instead of attempting to find a single abstraction 
hierarchy that can be used for all problems in a domain, an alternative approach is 
to select each abstraction hierarchy based on a problem or class of problems to be 
solved. As described in the following sections, the ordered monotonicity property can 
be used to produce finer-grained abstraction hierarchies if the property is guaranteed 
relative to a given problem instead of for an entire domain. 

4.1.2    Refinement of Abstract Plans 

This section defines establishment, justification, and refinement. These definitions are 
then used to formally define the monotonicity and ordered monotonicity properties. 

Establishment 

Abstract planning is usually done in a top-down manner. An solution is first found 
in the most abstract version of the problem space, and then it is refined to account 
for successive levels of detail. This notion is formalized by first defining the concept 
of "operator establishment." Intuitively, an operator a establishes a precondition 
of another operator ß in a plan, if it is the last operator before ß in the plan that 
achieves that precondition. 

More precisely, an operator a establishes precondition p of operator ß whenever 
a precedes ß, p is an effect of a and a precondition of ß, and there are no operators 
between a and ß that have p as an effect.   This is formalized as follows, where 
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a-<n/? means that operator a precedes operator ß in plan II, and Ops(U) is the set 
of instantiated operators in plan II. Recall from Section 2.1 that Pg refers to the 
preconditions of operator ß and Ea refers to the effects of operator a. 

Definition 4.1 (Establishment) Let U be a correct plan, a,ße Ops(II), and p € 
Ea,Pß- Then a establishes p for ß in II (Establishes(a, ßyp, E)) if and only if 

1. a-<nß, 

2. W € Ops(II), ifa-<n<x'<Tiß, then pgEa>- 

The first condition states that a must precede ß in the plan. The second condition 
states that a must be the last operator that precedes ß and adds precondition p. 
Since II is a correct plan, this implies that there is additionally no operator between 
a and ß that undoes p. 

Justification 

An operator in a plan is justified with respect to a goal if it contributes, directly or 
indirectly, to the satisfaction of that goal. This condition holds when an operator 
achieves a literal that is either a goal or a precondition of a subsequent justified 
operator. Justification is used in the definition of a refinement below. 

Definition 4.2 (Justification) Let U be a correct plan, a € Ops(II), and Sg a goal. 
a is justified with respect to Sg in II (Justified(a,II,S'fl)J if and only if there exists 
u € Ea such that either: 

1. u € Sg, and Vo/ G Ops(IT), if (a^na1) then u £ Ea', or 

2. 3ß € Ops(n) such that ß is justified with respect to Sg, and 
Establishes(a, ß, u, II). 

The justification definition can be extended to plans as follows: Justified(U, Sg) if 
and only if for every operator a € Ops(H), Justified(a,U, Sg). 

Any operator that is not justified is not needed to achieve the goal and can be 
removed. Thus, an unjustified plan II (one for which Justified is false) that achieves 
Sg can be justified by removing all unjustified operators. JustifyPlan(JI, Sg) is used 
to denote the justified version of II. Under the above definitions, for any correct plan 
II that achieves goal Sg, Justified(JustifyPlan(JI, Sg),Sg) holds. 

Recall from Section 3.1.2, •Mj(.s) is a state mapping function that maps a ground- 
level state s to a state at level i, and M%

0(a) is an operator mapping function that 
maps a ground-level operator a to an operator at level i.   Both of these functions 
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perform the mapping simply by dropping the conditions that are not in abstraction 
level i. Similarly, we can define a plan mapping function .Mj,(II) that maps a ground- 
level plan II to a plan at level i by replacing each operator Q in II by M^a). We 
can also define a problem mapping function Mx

p(p) that maps a problem p = (So, Sg) 
to the corresponding abstract problem p = (M),(S0), M\(Sa)) at level i. In the 
remainder of this section, the subscript will be dropped from the mapping functions 
since it is clear from the context which mapping function is required. 

By the above definitions, JustifyPlan(M%(lL), M^Sg)) denotes the abstract plan 
that corresponds to the ground-level plan II justified at level i with respect to goal 

The definition of justification can now be used to show that for any plan that 
achieves a goal in the base space, the abstract version of that plan with all the 
unjustified operators removed achieves the goal at the abstract level. 

Lemma 4.1 IfU is a plan that solves p = (So,Sg) at the base level of an abstraction 
hierarchy, then JustifyPlan(jM'(II), M'iSg)) is a plan that solves Mx\p) on level i of 
the hierarchy. 

The proof of an analogous lemma can be found in [Tenenberg, 1988, pg.69]. The 
idea is that since conditions involving certain literals are eliminated in ascending the 
abstraction hierarchy, one can eliminate from plans those operators included solely 
to satisfy these eliminated conditions. For example, if the 0p6nDoor condition is 
eliminated at level i, then those plan steps from levels below i that achieve OpenDoor 
can be removed. Note that the upward solution property holds as a trivial corollary 
of this lemma. 

Refinement 

With the notion of justification, we can now define the "refinement" of an abstract 
plan. Intuitively, a plan II is a refinement of an abstract plan IP4, if all operators and 
their ordering relations in T1A are preserved in II, and the new operators have been 
inserted for the purpose of satisfying the re-introduced preconditions. 

Definition 4.3 (Refinement) A plan II at level i — 1 is a refinement of an abstract 
plan UA at level i, if 

1. II is justified at level i — 1, and 

2. there is a 1-1 function c (a correspondence function^ mapping each operator of 
HA into U, such that 

(a) Ve* € Ops(n^),M«'(c(a)) = a, 
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(b) if a -<n* ß, then c(a) -<n c(ß), 

(c) V7 € Ops(II),Va € Ops(n^), ifc(a) 7* 7, then 3/3 € Ops(II) with precon- 
dition p such that Justified(7, n,p) and Level(p) = i — 1. 

If II is a refinement of IP4, then we say that IP4 refines to II. This formal definition 
captures the notion of plan refinement used in many different planners, including AB- 
STRIPS [Sacerdoti, 1974], NOAH {Sacerdoti," 1977], SIPE [Wilkins, 1984], and ABT.WEAK 
[Yang and Tenenberg, 1990]. 

4.1.3    Monotonie Abstraction Hierarchies 

In Lemma 4.1, the relationship between II and its justifications at successive levels 
of abstraction reveals that not only are operators being eliminated from a plan in 
ascending the abstraction hierarchy, but that for those preconditions still present at 
a given level, the establishment relationships from the higher levels are preserved. 
Thus, if a planner can find this abstract-level plan, this plan could be expanded 
at successively lower levels by inserting operators that do not violate the abstract 
establishment structure. This section first defines a monotonic refinement and then 
uses this definition to define a monotonic abstraction hierarchy. 

A monotonic refinement of an abstract plan is a refinement that preserves all of 
the establishment relations. 

Definition 4.4 (Monotonic Refinement) Let UA be an abstract plan that solves 
A4l(p) at level i, i > 0 and is justified relative to M.%(Sg). A level i — I plan U is a 
monotonic refinement of a level i plan HA if and only if 

1. II is a refinement o/IP4, 

2. II solves /At~1(p) at level i — 1, and 

3. JustifyPlantA^n^JW'XSp)) = UA. 

An abstraction hierarchy is monotonic if every solvable problem has an abstract 
solution that has a monotonic refinement at each lower level. 

Definition 4.5 (Monotonic Abstraction Hierarchy) A k-level abstraction hier- 
archy is monotonic, if and only if, for every problem p = (£0, Sg) solvable at the 
ground level, there exists a sequence of plans nfe_1,... ,11° such that IIfc-1 is a justi- 
fied plan for solving Mk~1(p) at level k— I,-and for 0 < i < k, IP'1 is a monotonic 
refinement of'IP. 

An important feature of the monotonicity property is its generality: 



62 CHAPTER 4.   GENERATING ABSTRACTIONS 

Theorem 4.1 Every abstraction hierarchy is monotonic. 

Proof: This will be proven for a two-level hierarchy, but can be easily extended 
to k levels by induction. Let p be a problem at the ground level, and let II be a 
ground-level plan that solves p. By Lemma 4.1, there exists a abstract plan TLA = 
JustifyPlan{Ml{J\),Ml(Sg)) that solves the abstract problem M1(p). By definition, 
UA is justified. It follows from Definition 4.4 that 11.is a monotonic refinement of 
IT*. Thus, for every problem p in the ground space, there exists an abstract plan 
that solves p in the abstract space and has a monotonic refinement. Ü 

This property is useful because it means that the completeness of a hierarchical 
problem solver can be maintained while only considering the monotonic refinements 
of an abstract plan. 

4.1.4    Ordered Monotonic Abstraction Hierarchies 

This section first defines a more restrictive refinement, called an ordered refinement, 
and then uses this definition to define an ordered monotonic abstraction hierarchy. 

An ordered refinement of an abstract plan YlA is a refinement II in which no literals 
in the abstract level are changed by the operators inserted to refine the abstract plan, 
inserted operators. 

Definition 4.6 (Ordered Refinement) LetUA be a justified plan that solves M'(p) 
at level i, i > 0. A level i — 1 plan H is an ordered refinement of a level i plan TLA if 
and only if 

1. II is a monotonic refinement ofHA, and 

2. Va € Ops(n), if a adds or deletes a literal I with Level(/) > i, then 3a' G 
Ops(IF*) such that a = c(a'). 

The first condition requires that UA is a monotonic refinement of II. The second 
condition above states that in plan II, the only operators that add or delete literals 
at level i or above are refinements of the operators in IP*. 

The definition of an ordered refinement is now used to define the ordered mono- 
tonicity property. 

Definition 4.7 (Ordered Monotonic Abstraction Hierarchy) An abstraction 
hierarchy is ordered monotonic if and only if, for all problems p and for all justified 
plans UA that solve M*(p) at level i, for i > 0, every refinement ofHAat level i — 1 
is an ordered refinement. 
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This property guarantees that every possible refinement of an abstract plan will leave 
the conditions established in the abstract plan unchanged. In contrast, the mono- 
tonicity property requires explicit protection of these conditions. By ensuring that 
every refinement is ordered, the ordered monotonicity property guarantees that no 
violation of the monotonic property will ever occur during plan generation. 

Unlike the monotonicity property, not all abstraction hierarchies satisfy the or- 
dered monotonicity property. It is therefore important to -explore conditions under- 
which a hierarchy satisfies this property. The following restriction defines a set of con- 
straints that are sufficient but not necessary to guarantee the ordered monotonicity 
property. The constraints specify a partial ordering of the literals in an abstraction 
hierarchy. 

Restriction 4.1 Let O be the set of operators in a domain. Va € 0,Vp € Pa and 
Ve,e'<E£a, 

1. Level(e) = Level(e'), and 

2. Level(e) > Level(p). 

The first condition constrains all the literals in the effects of an operator to be at 
the same abstraction level. The second condition constrains the preconditions of an 
operator to either be at the same or lower level as the effects. As proved below, these 
two conditions are sufficient to guarantee the ordered monotonicity property of an 
abstraction hierarchy. 

Lemma 4.2 If an abstraction hierarchy satisfies Restriction 4-1> then any justified 
plan for achieving a literal I does not add or delete any literal whose level is higher 
than Level(Z). 

Proof: Let II be a justified plan at level i that achieves /. Since II is justified, every 
operator in II is used either directly or indirectly to achieve /. Thus, the establishment 
relations in II form a directed, acyclic proof graph in which / is the root. The operators 
form the nodes and the establishment relations form the arcs of the graph. The depth 
of a node in the proof graph is the minimal number of arcs to the root /. Below, we 
prove by induction on the depth of the proof graph that Va; G Ops(Tl),e € Ea, 
Level(l) > Level(e). This condition will guarantee that no operator in II affects any 
literal higher than Level(l) in the hierarchy. 

For the base case, consider the operator a at depth 1. Since?*!! achieves / and 
Justified(H, I), then I € Ea- From Restriction 4.1, Ve € Ea, Level(l) = Level(e). 

For the inductive case, assume that for each operator ß at depth i, Ve € Ea, 

Level(l) > Level(e). Let a be an operator at depth i + 1." Since H is justified, there 
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exists an operator ß at depth i with p € Pa, such that p £ Ea- From Restriction 4.1, 

Ve € Eg, Level(e) > Level(p). From the inductive hypothesis, Level(l) > Level(e). 

Therefore, Level(l) > Level{p). From Restriction 4.1, Ve' £ Ea, Level(p) = Level(e'). 
Thus, Ve' € £<*, £eue/(/) > Level(e'). D 

Theorem 4.2 Every abstraction hierarchy satisfying Restriction 4-1 is an ordered 
monotonic hierarchy. 

Proof: From Definition 4.7 we need to show that every refinement of a justified plan 
II''4 is an ordered refinement. By way of contradiction, assume that there exists a plan 
II that is a refinement of UA at level i-1, but is not an ordered refinement. It follows 
from Definition 4.6 that an operator a in II changes a literal /, with Level(l) > i, but 
the corresponding abstract operator Ml(a) is not in IP4. Since II is a refinement, it 
follows from Definition 4.3 that II is justified. Since II is justified and a € Ops(TL), 
a must achieve some condition p and be justified with respect to that condition. In 
addition, since Mx(a) is not in IP4, it follows from Definition 4.3 that Level(p) = i — 1. 
But a also achieves /, where Level(l) > i, which contradicts lemma 4.2. □ 

In general, the ordered monotonicity property is quite restrictive since it requires 
that the property hold for every problem in the domain. A natural extension, which 
allows finer-grained abstraction hierarchies, is to only require that an abstraction 
hierarchy have the ordered monotonicity property relative to a given problem. This 
extension is straightforward and is based on the definitions and results in the previous 
section. Associated with this property is a restriction on the assignment of literals to 
levels that is sufficient to insure this property for a given problem instance. 

Definition 4.8 (Problem-Specific Ordered Monotonic Hierarchy) 
An abstraction hierarchy is ordered monotonic relative to a specific problem p, if and 
only if for all justified plans UA that solve M*(p) at level i, for i > 0, every refinement 
of UA at level i — 1 is an ordered refinement. 

A problem-specific, ordered monotonic hierarchy can be formed by considering 
which operators of a domain could be used to solve a given goal. In particular, only 
some of the operators would actually be relevant to achieving a given goal. And, of 
those operators, only some of their effects would be relevant to achieving the goal. 
These are called the "relevant effects". The relevant effects of an operator a relative 
to a goal Sg (denoted Relevant (a, Sg)) are those effects of a that are either in Sg, or 
are preconditions of operators that have relevant effects with respect to Sg. 

Definition 4.9 (Relevant Effects) Let Sg be a goal state, and O be the set of op- 
erators in a domain. Given a € 0, e € Ea, e is a relevant effect of a with respect to 
Sg (or e € Relevant(a, Sg)) if and only if 
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Lee Sg, or 

2. 3ß € O, Relevant^, Sg) ±% ande^Pß. 

The following restriction defines a set of constraints on an abstraction hierarchy 
that are sufficient to guarantee the ordered monotonicity property of an abstraction 
hierarchy for a specific problem. 

Restriction 4.2 Let p = (So,Sg) be a problem instance and O be the set of operators. 
VQ € 0, Ve,e' € Ea, p €. Pa, i/e£ Relevant(a, Sg) then 

1. Level(e) > Level(e'), 

2. Level(e) > Level(p). 

The restriction requires that all the relevant effects of an operator a to be at the same 
or higher levels of abstraction than both the other effects and the preconditions of a. 

Lemma 4.3 If an abstraction hierarchy satisfies Restriction 4-2, then any justified 
plan for achieving a literal I does not add or delete any literal whose level is higher 
than Level (/). 

Proof: The proof is analogous to the proof of Lemma 4.2. As above, let II be a 
justified plan at level i that achieves I, where the establishment relations in II form a 
directed, acyclic proof graph in which / is the root. The proof is by induction on the 
depth of the proof graph and shows that Va € Ops(H),e € Ea, Level(l) > Level(e). 

For the base case, consider the operator a at depth 1. Since II achieves / and 
Justified(U.,l), then / € Ea. From Restriction 4.2, since / 6 Relevant (a, I), Ve £ Ea, 
Level (I) > Level (e). 

For the inductive case, assume that for each operator ß at depth i, Ve € Ea, 
Level(l) > Level(e). Let a be an operator at depth i + 1. Since II is justified, 
there exists an operator ß at depth i with precondition p € Pa, such that p 6 
Ea- From Restriction 4.2, Vg € Relevant(ß,Sg), Level(q) > Level(p). From the 
inductive hypothesis, Level(l) > Level(q). Therefore, Level(l) > Level{p). Since 
p € Relevant {a, I), from Restriction 4.2, Ve' € Ea, Level(p) > Level{e'). Thus, 
Ve' € Ea, Level(l) > Level(e'). O 

Theorem 4.3 Every abstraction hierarchy satisfying Restriction 4-2 with respect to 
a problem p is a problem-specific ordered monotonic hierarchy with respect to p. 

. Proof:   The proof is the same as the proof of Theorem 4.7 with Lemma 4.2 replaced 
by Lemma 4.3. n 
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4.2    Generating Abstraction Hierarchies 

The restrictions described in the last section can be used as the basis for construct- 
ing ordered monotonic abstraction hierarchies. Hierarchies that have this property 
are desirable because they partition the literals in a domain such that a condition 
at one level in the hierarchy can be achieved without interacting with conditions 
higher in the hierarchy. The construction, of such a hierarchy requires finding a suffi- 
cient set of constraints on the placement of the' literals in a hierarchy such that this 
property can be guaranteed. This section first presents algorithms for finding both 
problem-independent and problem-specific constraints that are sufficient to guarantee 
the ordered monotonicity property. Then it describes the top-level algorithm for con- 
structing an abstraction hierarchy given a set of constraints. To simplify the descrip- 
tion of the algorithms, this section assumes that the operators are fully-instantiated. 
Section 4.4.2 describes how the algorithms handle operators with variables. 

4.2.1     Determining the Constraints on a Hierarchy 

This section presents two algorithms for generating ordering constraints on an abstrac- 
tion hierarchy. The first algorithm produces a set of problem-independent constraints 
that guarantee the ordered monotonicity property. The second algorithm produces a 
set of problem-specific constraints, where the constraints are sufficient to guarantee 
the ordered monotonicity property for a given problem. The ordering constraints gen- 
erated by the algorithms are placed in a directed graph, where the literals form the 
nodes and the constraints form the edges. Each literal at a node represents both that 
literal and the negation of the literal since it is not possible to change one without 
changing the other. A directed edge between two nodes in the graph indicates that 
the literals of the first node cannot occur lower in the abstraction hierarchy than the 
literals of the second node. 

Problem-Independent Constraints 

A set of problem-independent constraints can be generated for a problem space based 
on Restriction 4.1. This restriction requires that all the effects of each operator 
must be placed in the same abstraction level and the preconditions of each operator 
cannot be placed in a higher level in the abstraction hierarchy than the effects of the 
same operator. The algorithm in Table 4.1 finds exactly this set of constraints and 
records them in a directed graph. For each operator, the algorithm arbitrary selects 
an effect and then adds directed edges in both directions between that effect and all 
the other effects. It also adds directed edges between the selected effect and all of the 
preconditions of the operator. 
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Input: The operators that define the problem space. 
Output: Sufficient constraints to guarantee ordered monotonicity. 

function Find-Constraints (graph, operators) : 
for each op in operators 

select litl in Effects(op) 
begin 
for each lit2 in Effects(op) 

begin 
AdcLDirectecLEdge(litl,lit2,graph); 
Add_Directed_Edge (lit2, lit 1, graph) 
end; 

for each lit2 in Preconditions (op) 
Add_Directed_Edge (lit 1, lit2 .graph) 

end; 
return (graph); 

Table 4.1: Problem-Independent Algorithm for Determining Constraints 

The complexity of this algorithm is 0(d), where d is the length of the encoding 
of a problem space (i.e., the number of literals in the preconditions and effects of 
all the operators). To find the constraints, the algorithm only scans through the 
preconditions and effects of each operator once.2 

While this algorithm generates a sufficient set of constraints for the ordered mono- 
tonicity property, many of the constraints will not be necessary to guarantee the 
property. As such, the algorithm will only produce abstractions for a limited class of 
problem spaces. The next section describes a problem-specific version of this algo- 
rithm, which will produce useful abstractions for a wider class of problem spaces. 

Problem-Specific Constraints 

Restriction 4.2 can be used to generate a set of problem-specific constraints for a given 
problem space and problem. This restriction provides a sufficient set of constraints 
to guarantee the ordered monotonicity property for a given problem. An algorithm 
that implements this restriction is shown in Table 4.2. The algorithm is similar to 
the problem-independent one,, but forms the constraints based on a particular set of 
goals to solve. 

2Thanks to Charles Elkan for pointing out that my original 0(d?) algorithm [Knoblock, 1990a] 
could be transformed into a linear algorithm. 
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The algorithm is given the operators and the goals of the problem to be solved 
and it returns a directed graph of the constraints on the abstraction hierarchy. It 
scans through each of the goal literals and first checks to see if the constraints for 
the given literal have already been added to the graph (lines 1-2). If not, it scans 
through each of the operators and finds those operators that could be used to achieve 
the given goal (lines 3-4). The algorithm then adds constraints between any effect 
that matches the goal and the other effects and preconditions of the operator (lines 
5-9). The algorithm is called recursively on the preconditions of the operator since 
these could arise as subgoals during problem solving (line 10). The algorithm will 
terminate once it has considered all of the conditions that could arise as goals or 
subgoals during problem solving. 

Input: The operators of the problem space and the goals of a problem. 
Output: Sufficient constraints to guarantee ordered monotonicity for the given problem. 

function Find-Constraints(graph,operators,goals): 
1. for each goal in goals do 
2. if Not(Constraints_Determined(goal,graph)) then 
3. for each op in operators do 
4. if goal in Effects (op) do 

begin 
5. for each effect in Effects (op) do 

6. Add_Directed_Edge(goal,effect,graph) ; 
7. preconds <— Preconditions(op); 
8. for each precond in preconds do 
9. Add_Directed_Edge(goal,precond,graph) ; 
10. Constraints -Determined (goal, graph) <— true; 
11. graph <— Find_Constraints(graph,operators,preconds) 

end; 
11.    return(graph) 

Table 4.2: Problem-Specific Algorithm for Determining Constraints 

An important advantage of the problem-specific abstractions is that the algo- 
rithm only produces the constraints that are relevant to the particular problem to 
be solved. Thus, it can produce finer-grained hierarchies than could be produced for 
the entire problem domain. In many cases the abstraction hierarchy produced by the 
problem-independent algorithm collapses into a single level, while the problem-specific 
algorithm produces a useful abstraction hierarchy. 

The complexity of determining the constraints, and thus the complexity of creat- 
ing the problem-specific abstraction hierarchies, is 0(n • o • /), where n is the number 
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of different literals in the graph, o is the maximum number of operators relevant to 
achieving any given literal, and / is the maximum length (total number of precondi- 
tions and effects) of the relevant operators. In the worst case, the algorithm must 
loop through each literal, and for each relevant operator scan through the body of the 
operator and add the appropriate constraints. This cost is insignificant compared to 
problem solving since its complexity is polynomial in the size of the problem space, 
while the complexity of problem solving is exponential in the solution length. 

4.2.2    Constructing A Hierarchy 

This section describes the algorithm for constructing an abstraction hierarchy. The 
algorithm is given the operators that define a problem space and, optionally, the 
goals of a problem to be solved, and it produces an ordered monotonic abstraction 
hierarchy. The algorithm partitions the literals of a domain into classes and orders 
them such that the literals at one level will not interact with the literals in a more 
abstract level. The final hierarchy consists of an ordered set of abstraction spaces, 
where the highest level in the hierarchy is the most abstract and the lowest level is 
the most detailed. ► 

Table 4.3 defines the Create_Hierarchy procedure for building ordered mono- 
tonic abstraction hierarchies. The procedure is given the domain operators and, 
depending on the definition of Find-Constraints, may also be given the goals of 
the problem to be solved. Without using the goals, Create_Hierarchy produces a 
problem-independent abstraction hierarchy, which can be used for solving any prob- 
lem in a domain. Using the goals, the algorithm produces an abstraction hierarchy 
that is tailored to the particular problem to be solved. 

Input: Operators of a problem space and, optionally, the goals of a problem. 
Output: An ordered monotonic abstraction hierarchy. 

procedure Create_Hierarchy(operators[.goals]) : 
1. graph •*— Find_Constraints({},operators [.goals]) ; 
2. components <— Find_Strongly_Connected_Components (graph) ; 
3. partial-order <— Construct_Reduced_Graph(graph,components) ; 
4. total_order <— Topological_Sort(partial-order) ; 
5. absJiierarchy *- Construct_Abs_Hierarchy(total_order) ; 
6. return (absJiierarchy) 

Table 4.3: Algorithm for Creating an Abstraction Hierarchy 
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• Step 1 of the algorithm produces a set of constraints on the order of the lit- 
erals in an abstraction hierarchy using the algorithms in either Table 4.1 or 
Table 4.2. By Theorems 4.2 and 4.3, the constraints are sufficient to guarantee 
that a hierarchy built from these constraints will have the ordered monotonicity 
property. 

• Step 2 finds the strongly connected components of the graph using a depth-first 
search [Aho et al., 1974]. Two nodes in a directed graph are in the same strongly 
connected component if there is a path from one node to the other and back 
again. Thus, any node in a strongly connected component can be reached from 
any other node within the same component. As such, this step partitions the 
graph into classes of literals where all the literals in a class must be placed in 
the same abstraction level. 

• Step 3 constructs a reduced graph where the nodes that comprise a connected 
component in the original graph correspond to a single node in the reduced 
graph. There is a constraint between two nodes in the reduced graph if there was 
a constraint between the corresponding nodes in the original graph. The literals 
within a node in the reduced graph must be placed in the same abstraction 
space and the constraints between nodes define a partial order of the possible 
abstraction hierarchies. 

• Step 4 transforms the partial order into a total order using a topological sort 
[Aho et al, 1983]. The total order defines a single ordered monotonic abstraction 
hierarchy. There may be a number of possible total orders for a given partial 
order and one order may be better than another. Section 4.4.4 describes the 
set of heuristics used to choose between the possible total orders. 

• Step 5 uses the total order to construct an abstraction hierarchy. The most 
abstract level in the hierarchy contains only the literals that are first in the total 
order. Each successive level of the abstraction hierarchy contains the literals 
from the previous level combined with the next element of the total order. The 
most detailed level in the hierarchy contains all of the literals in the graph. 

The complexity of steps 2-5 in the algorithm above is linear in the size of the graph. 
The complexity of both finding the strongly connected components of a directed 
graph and performing the topological sort is 0(max(e,v)) [Aho et al, 1974], where 
e is the number of edges (constraints) and v is the number of vertices (literals). 
Creating the reduced graph is also 0(max(e,v)) since the new graph can be created 
by scanning through each of the vertices and edges once. The complexity of forming 
the abstraction hierarchy is 0(v) since this step only needs to scan the vertices of 
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the sorted graph once to build the hierarchy. Thus, the complexity of steps 2-5 is 
0(max(e,v)). 

Using the problem-independent algorithm for finding the constraints, the com- 
plexity of building an abstraction hierarchy is linear in the length of the encoding. 
Since finding the constraints is 0(d), where d is the length of the encoding, and the 
number of possible constraints, e, and the number of possible literals, u, is bounded 
by 0(d), the complexity of the entire algorithm is 0(d). 

As described above, the complexity of the problem-specific algorithm for finding 
the constraints is 0(n -o-l), so the complexity of building a problem-specific abstrac- 
tion hierarchy is also 0(n -o-l) (n is the number of different literals, o is the number 
of operators relevant to achieving each literal, and / is the length of each relevant 
operator). The complexity of the graph algorithms is bounded by the complexity of 
finding the constraints since the number of vertices, v is the number of literals n, and 
the number of edges e must be bounded by n • o • I since this is the complexity of the 
algorithm for finding the constraints, which are the edges in the graph. 

4.3     Tower of Hanoi Example 

This section applies the approach to generating abstractions described in this chapter 
to the Tower of Hanoi puzzle. The algorithms presented in the previous section can 
be used to automatically generate the abstraction of the Tower of Hanoi described 
in the previous chapter, where the disks are partitioned into separate abstraction 
levels. This section describes how the algorithm generates this abstraction, shows 
the intermediate results at each step in the algorithm, and then provides an intuitive 
explanation for why the ordered monotonicity property provides a good decomposition 
of this problem. 

Given a three-disk Tower of Hanoi problem in either representation described 
in Section 2.2, both the problem-independent and problem-specific versions of the 
algorithm generate a three-level abstraction hierarchy. The two algorithms differ 
in that for a problem involving only the two smallest disks, the problem-specific 
algorithm would generate only a two-level hierarchy, while the problem-independent 
version would still generate a three-level hierarchy since it does not take the problem 
into account. 

The first step of the algorithm for constructing an abstraction hierarchy is to find 
a set of constraints that are sufficient to guarantee the ordered monotonicity property. 
Both versions of the find-constraints algorithm would produce the directed graph 
of constraints shown in Figure 4.1, where diskC is the largest disk and diskA is the 
smallest. The problem-independent algorithm would consider each operator and first 
add constraints that force all the effects of each operator to be in the same abstraction 
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(onditkBpsgl) (on diskA p«g3) 

Figure 4.1: Constraints on the Literals in the Tower of Hanoi 

level and then add constraints that force the precondition of an operator to be lower 
(or at the same level) than the effects. 

For example, consider the constraints generated by the algorithm from the oper- 
ator shown in Table 4.4 (additional constraints would be generated from the other 
operators). First, it would add constraints based on the effects, which would generate 
a constraint between (on diskC pegl) and (on diskC peg3), as well as a constraint 
between the same literals in the opposite direction. Then the algorithm would con- 
sider the preconditions and add constraints between one of the effects and each of the 
preconditions of that operator. For example, it would add a constraint that required 
(on diskC peg3) to be higher or at the same level as (on diskB pegl). (Note that 
a literal and a negation of a literal are considered the same literal for purposes of 
abstraction and thus placed at the same level since obviously one cannot be changed 
without changing the other.) 

(Move_DiskC_From_Pegl_to_Peg3 
(preconds (and (on diskC pegl) 

(not  (on diskB pegl)) 
(not  (on diskA pegl)) 
(not  (on diskB peg3)) 
(not  (on diskA peg3)))) 

(effects ((del  (on diskC pegl)) 
(add (on diskC peg3))))) 

Table 4.4: Instantiated Operator in the Tower of Hanoi 
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The second step in creating the abstraction hierarchy is to find the strongly con- 
nected components. Two literals are in the same connected component if and only 
if there is a cycle in the directed graph that contains both literals. Figure 4.2 shows 
the three connected components in the graph, where the literals involving each disk 
form a component. Each of these components contains a set of literals that must be 
placed in the same abstraction level. 

Figure 4.2: Connected Components in the Tower of Hanoi 

The third step in the algorithm is to combine the literals within each connected 
component into a single node to form a reduced graph. The reduced graph for the 
Tower of Hanoi, which is shown in Figure 4.3, reduces the original graph to a graph 
with three nodes and only a few constraints between the nodes. The arrows between 
the nodes in a reduced graph specify the constraints on the order in which the literal 
classes can be removed to form an abstraction hierarchy. 

The fourth step in the algorithm converts the partially-ordered directed graph 
into a total order using a topological sort. In the case of the Tower of Hanoi there 
is only one possible order, where the disks are ordered by size. The resulting total 
order is shown in Figure 4.4 

In the last step, the total order is converted into the abstraction hierarchy shown 
previously in Figure 3.7. For the three-disk puzzle, the highest abstraction level 
includes literals involving only the largest disk, the next level includes both the largest 
and middle size disk, and the third level includes all three disks. It is possible to 
divide the disks into separate abstraction levels since the steps necessary to move a 
given disk can always be inserted into an abstract plan without interfering with the 
position of any larger disks. For an n^disk problem, the algorithm would produce a 
n-level abstraction hierarchy. Section 5.1 presents empirical results on using these 
abstraction hierarchies for problem solving. 
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Figure 4.3: Reduced Graph in the Tower of Hanoi 

In general, abstraction hierarchies are useful because they form reduced state 
spaces that can be searched more effectively than the original state space. The reduced 
state spaces for the three-disk puzzle are shown in Figure 4.5. The state space on 
the left shows the result of removing the smallest disk. The nodes that differ only by 
the location of the smallest disk are collapsed into a single node, reducing the state 
space from 27 states to 9 states. The operators that are not relevant to a given state 

(on diskC peg2) 

(on dlskC pogl) (on dlskC pog3) 

(on diskB peg2) 

(on dlskB pag1) (on diskB psg3) 

(on diskA psg2) 

(on dlskA pegl) (on dlskA peg3) 

Figure 4.4: Total Order in the Tower of Hanoi 
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space are replaced with dotted lines. Removing the middle-sized disk, as well as the 
smallest disk, produces a state space with only 3 states, which is shown on the right 
of Figure 4.5. 

/•'"••""""'A 

Figure 4.5: Reduced State Spaces in the Tower of Hanoi 

The abstraction hierarchy for the Tower of Hanoi has the ordered monotonicity 
property since it satisfies restriction 4.2. Since this property requires that every 
refinement of an abstract plan leaves the conditions achieved in the abstract space 
unchanged, it follows that the work done at each abstraction level is never undone 
in the process of refining the plan. In the case of the Tower of Hanoi, a solution in 
the most abstract space produces a plan that moves the largest disk to the goal peg. 
Since the abstraction hierarchy has the ordered monotonicity property, at the next 
level only steps for moving the medium disk can be inserted. Thus, the abstraction 
hierarchy partitions the state space into 3 smaller spaces and any subproblem must 
be solved within one of these smaller state spaces. At the final level the hierarchy 
partitions the state space into 9 separate state spaces. Each subproblem at the base 
level is then solved in one of these 9 spaces. 

4.4     Generating Abstractions in ALPINE 

ALPINE is a fully implemented system that generates abstraction hierarchies for 
PRODIGY. As shown in Figure 4.6, ALPINE is given a problem space specification 
and a problem to be solved and it produces a problem-specific abstraction hierar- 
chy for the given problem. The abstraction hierarchy is then used by PRODIGY for 
hierarchical problem solving. 
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Figure 4.6: The Input and Output of ALPINE 

ALPINE uses an extended version of the problem-specific algorithm described in 
Section 4.2 to produce abstraction hierarchies. Since the abstractions are to be used 
for the particular hierarchical problem-solving method described in the previous chap- 
ter, ALPINE employs several extensions that allow it to produce finer-grained abstrac- 
tion hierarchies, but still preserve the ordered monotonicity property for the given 
problem solving method. Using this extended algorithm, ALPINE is able to produce 
abstraction hierarchies for a variety of domains, including the Tower of Hanoi, the 
STRIPS robot planning domain, an extended version of the STRIPS domain, and a 
machine-shop scheduling domain. These results are described in Chapter 5. 

To illustrate the ideas in this section, examples from the extended robot planning 
domain are used. This domain is an augmented version of the original STRIPS robot 
planning domain [Fikes and Nilsson, 1971]. In the original domain a robot can move 
among rooms, push boxes around, and open and close doors. In the augmented 
version, the robot can both push and carry objects and lock and unlock doors. The 
robot may have to fetch keys as well as move boxes, and may have to contend with 
doors that cannot be opened. 

The description of ALPINE is divided into four sections. The first section describes 
the problem-space definition that serves as the input to ALPINE. The second sec- 
tion presents the representation language of the abstraction hierarchies. The third 
section describes the reformulation of the problem and problem space that are per- 
formed to produce finer-grained abstraction hierarchies. The last section describes 
the PRODIGY-specific extensions to the basic algorithm for generating the abstraction 
hierarchies. 

4.4.1    Problem Space Definition 

ALPINE is given a problem-space specification that consists of three components: a 
set of PRODIGY operators, a type hierarchy for the operator representation language, 
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and a set of axioms that state invariants about the states of a problem space.3. 

Operators 

The first component of a problem space is a set of PRODIGY operators. As described 
in Section 2.3, each operator is composed of a set of preconditions and effects. The 
preconditions can include conjunctions, disjunctions^ negations, and both universal 
and existential quantifiers. The effects can be conditional, which means that whether 
or not an effect is realized depends on the state in which the operator is applied. 
Table 4.5 shows an example operator for pushing a box between rooms in the robot 
planning domain. 

(Push_Box_Thru_Dr 
(preconds 

(and (connects door room.x room.y) 
(dr-open door) 
(next-to box door) 
(next-to robot box) 
(pushable box) 
(inroom box room.y))) 

(effects  ( 
(del  (inroom robot room.y)) 
(del  (inroom box room.y)) 
(add (inroom robot room.x)) 
(add (inroom box room.x))))) 

Table 4.5: Example Operator in the Robot Planning Domain 

In addition to specifying the preconditions and effects of an operator, some of the 
effects may be designated as primary. The problem solver is only permitted to use 
an operator to achieve a goal if the desired effect is listed as a primary effect. By 
default, every effect of an operator is considered primary. Thus, unless the primary 
effects are specified, the push_box_thru_dr operator (Table 4.5) can be used to move 
either the robot or a box. In fact, the primary effect for this operator is (in-room box 
room.x). Thus, the problem solver would not attempt to use the push_box_thru_door 
operator to move the robot to another room; it would use it only to move the box., 

3A problem space in PRODIGY can also include a set of control rules, but ALPINE need not consider 
these to create the abstraction hierarchies. The use of control rules in an abstract space is described 
in Section 3.5.2 
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Of course, when a box is moved, the robot would still be moved as a secondary effect. 
The primary effects are implemented in PRODIGY by generating a set of control rules 
that select only the operators whose primary effect matches a goal. 

Type Hierarchy 

The second component of the problem-space specification is a type hierarchy, which 
specifies the types of all the constants and variables in a problem domain. The 
type hierarchy is used to differentiate literals with the same predicate but different 
argument types. If no type hierarchy is given, then all constants and variables are 
considered to be of the same type. In the example operator, the type hierarchy allows 
the system to differentiate between (inroom robot room) from (inroom box room). 
The type hierarchy for the robot planning domain is shown in Figure 4.7. The types, 
shown in boldface, are on the interior nodes of the tree and the instances are on the 
leaves. This particular hierarchy was implicit in the original definition of the problem 
space. 

Type 

Object Robot        Room 

si\   t   As 
Box     Key     Door     r0bot      rooml   \     'oom3 

y^ T       f\      f ^s, room2 
boxl     box2  /      \door12   door23 

key12    key23 

Figure 4.7: Type Hierarchy in the Robot Planning Domain 

Axioms 

The third component of the problem-space specification is a set of axioms that de- 
scribe facts that hold for every state of a problem space. For example, one such axiom 
for the robot planning domain states that if a door is open then it must be unlocked. 
A list of example axioms for this domain is shown in Table 4.6. These facts cannot 
be derived from the operators because they are axioms about conditions that hold in 
every state. The operators may make assumptions about these conditions, but,these 
assumptions are not usually stated explicitly. 
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(dr-open door)  —» (unlocked door) 
(locked door)  —► (dr-closed door) 
(not (dr-closed door))  —► (and (dr-open door) (unlocked door)) 
(not (dr-open door)) —*  (dr-closed door) 
(not (locked door))  —> (unlocked door) 
(not (unlocked door)) —► (and (locked door)(dr-closed door)) 
(not (arm-empty)) —* (holding object) 
(not (holding object))  —► (arm-empty) 
(next-to 6oxl 6ox5)  —»  (and (inroom 6oxi room) (inroom 601I? room)) 
(next-to robot box)  —»  (and  (inroom 60a; room) (inroom robot room)) 

Table 4.6: Example Axioms in the Robot Planning Domain 

4.4.2    Representation Language of Abstraction Spaces 

The algorithms and examples up to this point have implicitly assumed that the literals 
in the domain are all represented at the same level of granularity. For example, 
in the Tower of Hanoi all the literals were completely instantiated ground literals. 
However, the operators of a domain are usually expressed as operator schemas, where 
each instantiation of the schema corresponds to an operator. A schema can contain 
both instantiated and uninstantiated literals. Since the algorithms for generating the 
abstractions are based on analyzing the potential interactions between the literals 
used in the operators, the operator representation limits the representation of the 
abstractions. 

To deal with the problem that some literals may be instantiated while others are 
uninstantiated or partly instantiated, ALPINE associates a type with each literal. It 
could assume that two literals with the same predicate are of the same type, but 
this would severely restrict the possible abstractions of a domain. In the Tower of 
Hanoi, all of the "on" conditions would be forced into the same abstraction level and 
there would be no abstraction. Instead the type of each literal is determined by both 
the predicate and the argument types. The type of each literal is easily determined 
by the type hierarchy described in the last section. Each constant and variable has 
an associated type, so from each literal, instantiated or uninstantiated, it is possible 
to determine the argument types. Literals of different types are initially placed in 
distinct nodes in the graph. . For example, in the robot planning domain, (inroom 
robot room) and (inroom box room) are of distinct types since they differ by the 
second argument. 

Currently only literal types that are immediately above the leaves of the type hi- 
erarchy can be used to represent a literal in an abstraction hierarchy. For example, in 
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the robot planning domain, the type "object" is a type at an interior node in the tree, 
so it is not possible to have the literal (inroom object room) in the final abstraction 
hierarchy, only the finer-grained conditions that refer to subtypes of object, (inroom 
box room) and (inroom key room), can be used in the abstraction hierarchy. There 
is no inherent reason for this restriction except that it simplified the implementation. 

4.4.3    Problem :and Operator Reformulation 

The abstraction process described so far involves dropping conditions from a problem 
space to form a more abstract problem space. The abstractions that are formed by 
this process will depend heavily on the initial formalization of both the problems and 
the problem spaces. The original problem space can be reformulated to improve the 
likelihood of generating useful abstractions. 

A straightforward approach to reformulating a problem space is to augment both 
the goals of a problem and the preconditions of the operators with conditions that 
will necessarily hold. Since the axioms described above provide invariants that hold 
for all states in a problem, they can be used to perform this augmentation. Consider 
a problem that requires achieving some goal P. In the problem space that is to be 
used for solving this goal, imagine there is an axiom which states that P implies Q. 
Using the axiom, the original goal P can be replaced with the goal P A Q, since 
Q will necessarily hold if P holds. At first glance this might appear to make the 
problem harder. However, by augmenting the goal, it may now be possible to drop P 
from the problem space. Without the reformulation of the problem, it may not have 
been possible to drop P and still produce an ordered monotonic abstraction. The 
augmentation and subsequent abstraction of the problem has the effect of replacing 
the problem of achieving P with the more abstract problem of achieving Q. P will still 
need to be achieved when the abstract solution is refined, but it may be considerable 
easier to achieve it once Q has been achieved. 

Consider an useful reformulation that occurs in the robot planing domain. The 
goal is to get boxl and box2 next to each other and to place boxl in room2: 

(and (next-to boxl box2)(inroom boxl room2)). 

This problem space has an axiom which states that if two boxes are next to each 
other then they must be in the same room: 

(next-to boxl boxS)  —»  (and (inroom boxl room) (inroom box2 room)). 

Using this axiom, the original goal would be augmented with the condition that box2 
must also be in room2: 

(and (next-to boxl box2)(inroom boxl room2)(inroom box2 room2)). 
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The augmentation is important because it allows the system to transform the problem 
into an abstract problem that would not be possible without the augmentation. In this 
case, without reformulating the problem ALPINE would find that there is a potential 
interaction between the next-to condition and the inroom condition and would not 
put the conditions in separate levels. By augmenting the goal, ALPINE uses the other 
goal conditions to show that no interaction is possible. (This process is described 
in the next section.) The reformulation allows the original problem of getting the 
two boxes next to each other to be replaced by the more abstract problem of getting 
the two boxes into the same room. Once the abstract problem has been solved, the 
additional steps for moving the two boxes next to each other can be inserted when 
the plan is refined. 

ALPINE augments the preconditions of operators in exactly the same way. Since 
the preconditions of operators arise as goals this also allows the system to produce 
finer-grained abstraction hierarchies that ensure the ordered monotonicity property. 
The operator Push_Box_Thru_Dr would be augmented as shown in Table 4.7. The 
boxed conditions in the table are the ones added by the axioms. These augmentations 
allow ALPINE to form an abstraction of this problem space by dropping the (dr-open 
door) conditions from the problem space. It makes this abstraction possible since 
whether the door is open is a detail as long as the door is not locked and the robot 
is in the appropriate room to open the door. 

(Push_Box_Thru_Dr 
(preconds 

(and (connects door room.x room.y) 
(dr-open door) 
(dr-unlocked door) 
(next-to box door) 
(next-to robot box) 
(pushable box) 
(inroom box room.y) 
(inroom robot room.y) ))) 

(effects ( 
(del  (inroom robot room)) 
(del (inroom box room)) 
(add (inroom robot room.x)) 
(add (inroom box room.x))))) 

Table 4.7: Reformulated Operator in the Robot Planning Domain 
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The reformulations of both the problems and the operators are important for two 
reasons. First, they allow the system to form abstractions that could not otherwise be 
guaranteed to have the ordered monotonicity property. Second, they can transform 
a problem into a problem that can be solved more easily. 

4.4.4    Abstraction Hierarchy Construction 

The algorithm described in Section 4.2 presented a general approach to finding or- 
dered monotonic abstraction hierarchies. This algorithm consists of five steps. First, 
find the constraints that are sufficient to guarantee the ordered monotonicity prop- 
erty. Second, combine the strongly connected components of the constraint graph 
to form the abstraction spaces. Third, construct a reduced graph by combining the 
nodes that comprise the strongly connected components. Fourth, perform the topo- 
logical sort to order the abstraction spaces. Fifth, convert the total order into an 
abstraction hierarchy. ALPINE employs this basic algorithm for constructing abstrac- 
tion hierarchies, but uses refinements of the steps for selecting the constraints and 
ordering the abstraction spaces to produce better hierarchies. 

Constraint Generation 

The algorithm presented earlier for finding a sufficient set of constraints to guarantee 
the ordered monotonicity is conservative and will often produce constraints that are 
unnecessary to guarantee the property. The unnecessary constraints can lead to 
cycles in the constraint graph, which in turn can collapse the graph and reduce the 
granularity of the abstraction hierarchies. In addition, the operator language used in 
PRODIGY is more expressive than the language assumed for the algorithm described 
earlier. To deal with both of these issues, ALPINE generates abstraction hierarchies 
that are tailored to PRODIGY and that exploit the particular hierarchical problem 
solving method used in PRODIGY. 

ALPINE's algorithm (Table 4.8) for finding a sufficient set of constraints to guar- 
antee ordered monotonicity exploits two additional sources of knowledge that are 
specific to the particular problem solving method. First, it uses information about 
the primary effects of operators to reduce the constraints on the effects. Second, it 
exploits the fact that although every precondition of an operator can be subgoaled 
on, in practice there are situations where the preconditions hold and will not become 
subgoals. Recall that the purpose of these constraints is to guarantee that the literals 
at one level in a hierarchy will not interact with literals in a more abstract level. The 
extensions to the basic algorithm, which are described in detail below, preserve the 
ordered monotonicity property for the given problem solving method, but allow the 
system to form finer-grained hierarchies than would otherwise be possible. 
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Input: Domain operators and a problem to be solved. 
Output: Sufficient constraints to guarantee ordered monotonicity for the given problem. 

function Find_Constraints(graph,operators,goals) : 
return Find_Graph_Constraints(graph,operators,goals,goals) ; 

function Find-Graph-Constraints (graph, operators,goals, context) : 
I. for each goal in goals do 
3. for each op in operators do 
4. if goal in Primary .Effects (op) do 

begin 
5. for each effect in Effects (op) do 

6. Add_Directed_Edge(goal,effect,graph); 

7. preconds <— Preconds(op); 
8. subgoals <— Subgoalable_Preconds(op,goal,preconds,context); 

9. for each precond in subgoals do 

10. Add_Directed_Edge(goal,precond,graph); 

II. Find_Graph_Constraints (graph, operators, subgoals,preconds) 
end; 

12.    return(graph) 

Table 4.8: Alpine's Algorithm for Determining Constraints 

ALPINE avoids unnecessary constraints based on the effects by using the primary 
effects to determine which operators can actually be used to achieve a goal. Since 
PRODIGY uses the primary effects to determine which operators can be used to achieve 
a given goal, it would never consider using an operator that did not have a matching 
primary effect. Thus, as long as the problem solver only subgoals on operators with 
matching primary effects, the algorithm will still guarantee the ordered monotonicity 
property. 

ALPINE avoids unnecessary constraints based on the preconditions by determining 
which preconditions can actually arise as subgoals. In general, if an operator is used 
to achieve a given goal, it may be necessary to subgoal on any of the preconditions of 
the operator. However, in some cases the preconditions of an operator are guaranteed 
to hold and would thus not be subgoaled on. Instead of adding constraints on all of 
the preconditions, the extended algorithm only adds constraints on the preconditions 
that could actually be subgoaled on in a given context. This extension preserves 
the ordered monotonicity property since the purpose of these constraints is to avoid 
subgoaling on conditions that are higher in the abstraction hierarchy. 
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ALPINE is conservative and assumes everything can be subgoaled on unless it can 
prove otherwise. There are three ways in which the system can show that a given 
precondition could not be subgoaled on. 

1. If a precondition is static, which means that it cannot be changed by any oper- 
ators, then it could never be subgoaled on. In the example operator described 
earlier, the condition connects is static since it describes the room connections, 
which are invariant for a given problem. 

2. If the precondition will necessarily hold in the context in which the operator is 
used, then it could not be subgoaled on. There are two situations in which this 
can occur: 

(a) If a precondition of an operator is also a precondition of the parent oper- 
ator, then the precondition must hold at the time the operator is inserted 
into the plan. For example, a precondition of the Push_Box_Thru_Dr opera- 
tor is that the door is open, and a precondition of the Open_Door operator 
is that the robot is in the room that is next to the door. This second 
precondition is also a precondition of the Push_Box_Thru_Dr operator, so 
when the Open_Door operator is used in the process of pushing a box thru 
a door, then the system can prove that given this context the OpenJDoor 
operator will not require getting the robot into the room. 

(b) If a precondition of an operator is the negation of the goal the operator is 
used to achieve, then it would not be subgoaled on since the negation must 
already hold or the operator would not have been considered. For exam- 
ple, the OpenJDoor operator has the precondition that the door is closed, 
however, this condition would not be subgoaled since if this condition is 
false, (i.e, the door is open) there is no point in considering the operator. 

All of this analysis is performed in a preprocessing step that only needs to be 
done once for a domain. When a hierarchy is created the algorithm calls the function 
Subgoalable_Preconds, which looks up the potential subgoals in a table given a goal 
and context. This function also keeps track of which conditions in which context have 
already been considered, so that the algorithm will terminate. 

ALPINE handles the full PRODIGY language, but does so simply by assuming the 
worst case. Disjunctions are treated as conjunctions, conditional effects are treated as 
unconditional effects, and both universal and existential quantifiers are considered for 
every possible binding. In addition, ALPINE adds constraints to ensure that if a pre- 
condition of an operator generates bindings for a variable that are then used by other 
preconditions in the same operator, then the precondition literal that generates the 
bindings cannot occur lower in the hierarchy than the literals that use the bindings. 
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These assumptions and constraints preserve the ordered monotonicity property and 
ensure that the abstractions generated by ALPINE will work correctly in PRODIGY. 

Abstraction Hierarchy Selection 

Once ALPINE builds the directed graph and combines the strongly connected compo- 
nents, the next step is to convert the partial order of abstraction spaces into a.total 
order. The algorithm shown in Table 4.3 uses a" topological sort to produce an ab: 

straction hierarchy. However, in general, the total order produced by the topological 
sort is not necessarily unique, and two abstraction hierarchies that both have the 
ordered monotonicity property for a given problem will differ in their effectiveness at 
reducing search. This section describes the approach ALPINE uses in selecting among 
the possible ordered monotonic abstraction hierarchies for a problem. 

Each potential abstraction space is comprised of a set of literals that have one or 
more of the following properties: 

Goal Literal A literal that matches one of the top-level goals. 

Recursive Literal A literal that could arise as a goal where the plan for achieving 
that goal could require achieving a subgoal of the same type. 

Static Literal A literal that is not changed by the effects of any of the operators. 

Binding Literal A literal that serves as a generator and does not occur in the pri- 
mary effects of any operators. A generator is any literal that generates bindings 
for variables in the preconditions of an operator. While a binding literal cannot 
be subgoaled on, it can generate a set of possible bindings for an operator. 

Plain Literal A literal that does not have any of the properties above. 

The types of the literals that comprise an abstraction space are used to determine 
the ordering of the levels and which levels should be combined. 

ALPINE employs the following set of heuristics to select the final abstraction hier- 
archy for problem solving: 

1. Place the static literals in the most abstract space. By definition there is no 
operator that adds or deletes any static literal so they can be placed at any 
level in the hierarchy without risk of a monotonicity violation. If a static literal 

•i- is false, then it is better to find out as early as possible to avoid wasted work. 

2. Place levels involving goal literals as high as possible in the abstraction hierar- 
chy. Thus, whenever there is a choice of placing one set of literals before another 
in the hierarchy and one set matches a goal literal and the other one does not, 
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then place the one involving the goal literal above the other.  Since goals are 
sometimes unachievable, it is better to find out as early as possible. 

3. Combine levels that involve only plain literals, when the levels could be adjacent 
in the final hierarchy. Each additional abstraction level in the hierarchy incurs 
a cost in the refinement process and combining them will reduce this cost. In 
the domains that have been studied, most of the search occurs in the levels 
involving the goal and recursive literals. 

4. Place levels involving binding literals as low as possible in the abstraction hier- 
archy and combine these levels with the levels directly below that involve only 
plain literals. Since the binding literals do not occur in the primary effects of 
any operators, they cannot be directly achieved. However, they can be used 
to generate the bindings of variables. The selection of an appropriate set of 
bindings may require some search, so it is better to delay consideration of these 
literals as long as possible. In the machine-shop domain, this type of literal is 
used to perform the actual scheduling. 

Figure 4.8 shows how the heuristics would transform an example partial order 
into a total order. This set of heuristics creates abstraction hierarchies where each 
separate abstraction level serves some purpose. The goal literals are placed at separate 
levels because it both orders the top-level goals and partitions the goals of a problem 
into separate levels. The recursive literals, even if they are not top-level goals, can 
involve a fair amount of search, and placing them in a separate level can reduce this 
search by removing some of the lower level details.4 The levels that contain only plain 
literals separate the details from the more important aspects of a problem. The levels 
involving binding literals delay the generation of bindings as long as possible, which 
can reduce backtracking. 

4.5    Discussion 

This chapter identified the monotonicity and ordered monotonicity properties and 
presented an algorithm for automatically generating ordered monotonic abstraction 
hierarchies. The monotonicity property is useful because it provides a criterion for 
pruning the search while still maintaining completeness. The ordered monotonicity 
property is useful because it captures a large class of interesting abstractions and it 
is tractable to find abstraction hierarchies that have this property. The algorithm 
for generating abstractions is implemented in ALPINE, which automatically generates 

4The idea of separating out the recursive literals was inspired by the work of Etzioni [1990], which 
identified the importance of nonrecursive explanations for explanation-based learning. 
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Figure 4.8: Selecting a Total Order from a Partial Order 

abstractions for Hierarchical PRODIGY. While the abstractions produced by ALPINE 
are intended to be used by Hierarchical PRODIGY, the basic approach to generating 
abstractions is applicable to any operator-based problem solver. 

The next chapter describes results in four problem-solving domains and shows 
that ALPINE produces effective abstraction in all four domains. There results serve 
to demonstrate both that the ordered monotonicity property does capture a useful 
class of abstractions and that these abstractions can produce significant reductions 
in search. 
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Chapter 5 

Empirical Results 

This chapter describes the results of both generating and using abstractions for prob- 
lem solving. The abstractions are generated by ALPINE and then used in the hi- 
erarchical version of PRODIGY. The chapter is divided into four sections. The first 
section demonstrates empirically, in the Tower of Hanoi, that abstraction can produce 
an exponential-to-linear reduction in search. The second section describes empirical 
results in several more complex domains to show that ALPINE can generate effective 
abstraction hierarchies for a variety of problem domains. The third section compares 
the performance of ALPINE's abstractions with both hand-coded and automatically 
generated search control knowledge. The last section compares ALPINE and ABSTRIPS 
in the original STRIPS domain and shows that ALPINE produces abstractions that have 
a considerable performance advantage over those generated by ABSTRIPS. 

5.1     Search Reduction: Theory vs. Practice 

As described in Section 4.3, ALPINE generates a hierarchy of abstraction spaces for the 
Tower of Hanoi that separates the various sized disks into separate abstraction levels. 
In the most abstract level it plans the moves for the largest disk, at the next level it 
adds the moves for the next largest disk, and so on. Section 3.4 showed analytically 
that this abstraction produces an exponential-to-linear reduction in the size of the 
search space. This section provides empirical confirmation of this result and then 
explores the search reduction when the problem solver uses a "nonadmissible" search 
procedure (a search procedure that is not guaranteed to produce shortest solutions). 

The degree to which the use of abstraction reduces search depends on the amount 
of search required to find a solution without using ^'abstraction. Admissible search 
procedures such as breadth-first search or depth-first iterative-deepening are guaran- 
teed to produce the shortest solution and to do so will usually search most of the 

89 
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search space. However, these methods are impractical in more complex problems, so 
this section also examines the use of the abstractions with a depth-first search. Not 
surprisingly, these results show that the actual reduction in search largely depends on 
how much of the search space is actually searched by the problem solver without using 
abstraction. In addition, the problem solver can sometimes trade off solution quality 
for solution time by producing longer solutions rather than searching for better ones. 

To evaluate empirically the use of ALPINE's abstraction in the Tower of Hanoi, 
PRODIGY was run both with and without the abstractions using a depth-first iterative- 
deepening search and depth-first search. The experiments compare the CPU time 
required and the length of the solutions on problems that range from one to seven 
disks. In the CPU time comparisons, the time required to create the abstraction 
hierarchies is included in the problem-solving time. The graphs below measure the 
problem size in terms of the optimal solution length, not the number of disks, since 
the solution to a problem with n disks is twice as long as the solution to a problem 
with n — 1 disks. For example, the solution to the six-disk problem requires 63 steps 
and the solution to the seven-disk problem requires 127 steps. 

Figure 5.1 compares PRODIGY with and without abstraction using a depth-first 
iterative-deepening search to solve each of the subproblems. As the analytical results 
predict, the use of abstraction with an admissible search procedure produces an expo- 
nential reduction in the amount of search. Without the use of abstraction, PRODIGY 
was unable to solve the four-disk problem within the 600 CPU second time limit. The 
results are plotted with the problem size along the x-axis and the CPU time used to 
solve the problem along the y-axis. In the Tower of Hanoi, the use of an admissible 
search produces optimal (shortest) solutions both with and without abstraction. 

Admissible search procedures such as breadth-first search or depth-first iterative- 
deepening are guaranteed to produce the shortest solution1 and to do so usually 
requires searching most of the search space. However, these methods are impractical 
in more complex problems, so this section also examines the use of hierarchical prob- 
lem solving with a nonadmissible search procedure. Figure 5.2 compares the CPU 
times and solution lengths with and without abstraction using depth-first search. As 
the graphs shows, the use of abstraction produces only modest reductions in search 
times and solution lengths. This is because, using depth-first search, neither con- 
figuration is performing much search. When the problem solver makes a mistake it 
simply proceeds adding steps to undo the mistakes. Thus, the amount of search per- 
formed by each configuration is roughly linear in the length of the solutions found. 

-Problem solving with abstraction performed better because the abstraction provides 
some guidance on which goals to work on first and thus produces shorter solutions 

*If an admissible search procedure is used to solve each of the subproblems in hierarchical problem 
solving, then the solution to each subproblem will be the shortest one possible, but the solution to 
the entire problem may still be suboptimal. 
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Figure 5.1: Depth-First Iterative-Deepening Search in the Tower of Hanoi 
ALPINE reduces search time exponentially. 

by avoiding some unnecessary steps. 
The small difference between depth-first search with and without using abstrac- 

tion is largely due to the fact that the problems can be solved with relatively little 
backtracking. To illustrate this point, consider a variant of the Tower of Hanoi prob- 
lem that has the additional restriction that no disk can be moved twice in a row 
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Figure 5.2: Depth-First Search in the Tower of Hanoi 
ALPINE produces modest improvements in both search time and solution quality. 
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[Anzai and Simon, 1979, Amarel, 1984, VanLehn, 1989]. This constrains the prob- 
lem considerably since the suboptimal plans in the previous graph were caused by 
moving a disk to the wrong peg and then moving the same disk again. By imposing 
additional structure on the problem, the problem solver is forced to search a larger 
portion of the search space to find a solution and as a result the abstraction will 
provide a greater reduction in search. Figure 5.3 compares the CPU time and the 
solution lengths for the two configurations on this variant of the domain. This small 
amount of additional structure enables the abstract problem solver to produce the 
optimal solution in linear time, while PRODIGY produces a suboptimal solution that 
requires significantly more problem-solving time. 
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Figure 5.3: Depth-First Search in a Variant of the Tower of Hanoi 
ALPINE significantly reduces the search time and produces optimal solutions. 

The Tower of Hanoi is perhaps a bit unusual in that the structure of the search 
space allows the problem solver to undo its mistakes by simply inserting additional 
steps. In domains that are more constrained, the problem solver may be forced to 
backtrack and search a fairly large portion of the search space to find a solution. In 
those domains the use of abstraction will provide more dramatic search reductions 
with a depth-first search. In the less constrained domains, the problem solver can 
simply trade solution quality for search time. Thus, using a depth-first search, ab- 
straction can reduce both the search and the solution length, and the reduction of 
each depends on the structure of the problem domain. 
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5.2    Empirical Results for ALPINE 

ALPINE generates abstraction hierarchies for a variety of problem solving domains. 
This section describes the abstractions generated by ALPINE on two problem solving 
domains and the use of these abstractions in PRODIGY to reduce search. These do- 
mains were previously described in [Minton, 1988a], where they were used to evaluate 
the effectiveness of the explanation-based learning (EBL) module in PRODIGY. The 
first domain is an extended version of the original STRIPS robot planning domain and 
the second domain is the machine-shop planning and scheduling domain that was 
described in Section 2.3. 

5.2.1    Extended STRIPS Domain 

This section describes the abstraction hierarchies generated by ALPINE for the ex- 
tended version of the robot planning domain. This domain is an extended version 
of the STRIPS robot planning domain [Fikes and Nilsson, 1971] and includes locks, 
keys, and a robot that can both push and carry objects. These extensions make 
the domain considerably more complex since there are multiple ways to achieve the 
same goals and there are many potential dead-end search paths because of locked 
doors and potential unavailability of keys. The version of the domain used for the 
experiments differs syntactically from the original extended STRIPS domain [Minton, 
1988a]. These minor syntactic differences allow ALPINE to produce finer-grained ab- 
straction hierarchies. Appendix B describes the differences and provides a complete 
specification of the problem space. 

The definition of the problem space includes some control information that was 
not included in the original problem space. As described in Section 4.4.1, the problem 
space definition includes a specification of the primary effects, which ALPINE uses to 
construct the abstraction hierarchies. To avoid an unfair bias in the favor of ALPINE, 
the primary effects are translated into control knowledge, which is given to all of 
the systems in the comparisons. The inclusion of this control knowledge improves 
the problem-solving performance in this domain, allowing the problem solver to solve 
considerably more complex problems, even in the absence of abstractions. 

ALPINE produces abstractions in this domain that both reduce search time and 
produce shorter solutions. As described earlier, each abstraction hierarchy is auto- 
matically tailored to the particular problem based on the parts of the domain that 
are relevant to solving the particular problem. For example, an abstraction hierarchy 
for a problem that simply involves moving the robot into a particular room can com- 
pletely disregard any conditions involving boxes. Similarly, whether a door is open 
or closed may or may not be a detail depending on whether or not it occurs in the 
goal statement. If it is in the goal, it is no longer a detail since the plan may require 
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additional steps to get the robot to a room in which the goal can be achieved. 
In constructing the abstraction hierarchies for this domain, ALPINE uses 33.9 CPU 

seconds to perform the one-time preprocessing of the domain. To construct the ab- 
straction hierarchies for each of the test problems requires an average of 1.5 CPU 
seconds and ranges from 0.4 to 4.5 CPU seconds. The problem-solving times reported 
in this chapter include the time required to construct an abstraction hierarchy, but 
not the time required to perform the preprocessing since that only needs to be done 
once for the entire domain. 

Consider a problem that was taken from the set of randomly generated test prob- 
lems for this domain. The problem consists of moving three boxes into a configuration 
that satisfies the following goal: 

(and (next-to a d)(in-room b room3)(in-room a room4)). 

The randomly generated initial configuration is shown in Figure 5.4. The complete 
specification of this problem (#173) is given in Appendix B. Boxes and keys are 
scattered among the set of rooms and the doors between the rooms can be either 
open (OP), closed (CL), or locked (LO). The names of the keys are based on the 
rooms they connect (e.g., K36 is the key to the door connecting room3 and room6). 
This particular problem is difficult for two reasons. First, box A has two constraints 
that must be satisfied in the goal statement: box a must be next to box d and box a 
must be in room4. Second, some of the doors in the initial state are locked and the 
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Figure 5.4: Initial State for the Robot Planning Problem 
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robot, which starts out in room5, will need to go through at least two of the locked 
doors to solve the problem. 

To construct an abstraction hierarchy for this problem, ALPINE first augments the 
goal using the axioms described in Section 4.4.1 and then finds an ordered monotonic 
abstraction hierarchy for the augmented problem. The example problem would be 
augmented as follows: 

(and (next-to a d)(in-room b room3)(in-room a roöm4)(in-room d room4)) 

where there is an added condition that box d is in room4. This follows from the axiom 
that states that if two boxes are next to each other then they must be in the same 
room. The system constructs the abstraction hierarchy using the algorithm described 
in the previous chapter. The resulting three-level abstraction hierarchy is shown in 
Figure 5.5. The first level in the hierarchy deals with getting all of the boxes into 
the correct room. The second level considers the location of both the robot and the 
keys, whether doors are locked or unlocked, and getting the boxes next to each other. 
The third level contains only details involving moving the robot next to things and 
opening and closing doors. 

Level 2 

Level 1 

Level 0 

(inroom box room) 

(inroom robot  room) 

(locked door) 

(next-to box box) 

(inroom key room) 

(unlocked door) 

(next-to box door) 

(holding key)      (arm-empty)     (holding box) 

(next-to robot  key) 

(next-to robot box) (next-to robot  door) 

(dr-open  door) (dr-closed door) 

Figure 5.5: Abstraction Hierarchy for the Robot Planning Problem 

The abstraction hierarchy for this problem has several important features. First, 
the problem of getting the boxes into the final rooms is solved before moving the 
boxes next to each other. Thus, the planner will not waste time moving two boxes 
next to each other only to find that one or both of the boxes needs to be placed 
in a different room. Second, the conditions at the second level can require a fair 
amount of search - doors may need to be unlocked and thus keys must be found - 
but achieving these conditions will not interfere with the more abstract space that 
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deals with the location of the boxes. Note, however, that it may not be possible to 
refine the abstract plan because some door cannot be unlocked. This does not violate 
the ordered monotonicity property, but may require returning to the abstract space 
to formulate a different abstract plan. Third, the conditions at the final level in the 
hierarchy are details that can be solved independently of the higher level steps and 
inserted into the abstract plan. Once conditions like whether doors are locked or 
unlocked are considered, it will always be possible to open and close the doors. 

Before comparing the overall performance of the hierarchical problem solver using 
ALPINE's abstractions to problem solving without any use of abstraction, consider the 
results of using the abstraction hierarchy for this problem. As Table 5.1 shows, the 
use of the abstraction hierarchy produces a ten-fold speedup in solution time, reduces 
the amount of search by a factor of twenty, and produces a solution that is almost 
half the length of the solution produced without abstraction. 

System CPU Time (sec.) Nodes Searched Solution Length 
Prodigy 194.6 4069 76 
Prodigy -f Alpine 19.2 194 45 

Ratio: 10.1 : 1 21.1 : 1 1.7: 1 

Table 5.1: Performance Comparison for the Robot Planning Problem 

Table 5.2 shows the problem-solving search and solution steps at each level in the 
abstraction hierarchy. Level two, the most abstract level, produces a five-step plan 
for moving the boxes into the correct rooms. This level requires little search since 
it only requires finding paths to the destination rooms. Level one requires an addi- 
tional twenty-one steps to find the keys and unlock the doors, move the robot to the 
necessary places for moving the boxes, and move the boxes next to each other. This 
level requires the most search because of the difficulty of finding paths through rooms 
while dealing with doors that may be locked. The final level inserts an additional 
nineteen steps, but effectively requires no search (every step in the solution requires 
two nodes if there is no search).   Note that while these steps are individually easy 

Level 2 Level 1 Level 0 Total 
Nodes Searched 15 141 38 194 

Solution Lengths 5 21 19 45 

Table 5.2: Breakdown of the Abstract Search for the Robot Planning Problem 
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to achieve, separating them from the level above considerably simplifies the problem 
solving in the more abstract space. 

The use of ALPINE's abstractions does not always improve performance and, in 
some cases, can actually degrade the performance compared to problem solving with- 
out using abstraction. There are three possible ways in which ALPINE can degrade 
the performance on a particular problem. First, the added cost of constructing and 
using the abstraction hierarchy can -dominate the problem-solving time on-problems 
that can be solved easily without using abstraction. Second, since PRODIGY uses a 
depth-first search, the use of abstraction could lead the problem solver down a dif- 
ferent path than the default path that would have been explored first without using 
abstraction, which can result in more search to find a solution. Third, the use of a 
particular abstraction could degrade performance by producing abstract plans that 
cannot be refined and require backtracking across abstraction levels to find alter- 
native abstract plans. Despite these problems, the use of abstraction still produces 
significant performance improvements overall. 

To evaluate the abstraction hierarchies produced by ALPINE, this section compares 
problem solving with ALPINE's abstractions to problem solving in PRODIGY with no 
control knowledge and problem solving in PRODIGY with a set of hand-coded control 
rules (HCR). The comparison was made on a set of 250 randomly generated problems. 
Of these problems, 100 were used in Minton's experiments [Minton, 1988a] to test the 
EBL module. The hand-coded control rules correspond to the ones that were used in 
the EBL experiments. Because of the additional information about primary effects 
used in this comparison, these problems proved quite easy for the problem solver 
even without the use of abstraction. Thus, an additional set of 150 significantly more 
complex randomly generated problems was also used in the comparison. The harder 
problems were generated by increasing the number of goal conjuncts. The experiment 
compared PRODIGY running without the use of abstraction to the hierarchical version 
of PRODIGY using an abstraction for each problem generated by ALPINE. The different 
configurations were allowed to work on each problem until it was solved or the 600 
CPU second time limit was exceeded. 

Comparing the results of the different configurations on the set of test problems 
is complicated by the fact that some of the problems cannot be solved within the 
time limit. Similar comparisons in the past have been done using cumulative time 
graphs [Minton, 1990], but Segre et al. {1991] argue that such comparisons could 
be misleading because changing the time limit can change the results. To avoid this 
problem, the total time expended solving all of the problems is graphed against the 
CPU time bound. The resulting graph illustrates three things. First, each curve on 
the graph shows the total time expended on all the problems as the time bound is 
increased. Second, the slope at each point on a curve indicates the relative portion of 
the problems that remain unsolved. A slope of zero means that all of the problems 
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have been solved (no more time is required to solve any of the problems). Third, the 
shape of the curve can be extrapolated to estimate the relative performance of the 
systems being compared as the time bound is increased. 

Figure 5.6 provides the time-bound graphs for the test problems in the extended 
robot planning domain. The graphs separate the solvable problems from the unsolv- 
able problems (those problems that have no solution). Unsolvable problems can be 
considerably harder since the problem solver may have to explore every possible al- 
ternative to prove that a problem has no solution. The graph on the left contains the- 
206 solvable problems and the one on the right contains the remaining 44 -unsolvable 
problems. On the solvable problems, PRODIGY with abstraction can solve all the 
solvable problems in less than 200 CPU seconds. In contrast, both PRODIGY alone 
and PRODIGY with the hand-coded control rules have still not solved some of the 
problems after 600 CPU seconds. In addition, the total time spent by PRODIGY is 
over three times that of using abstraction. On the unsolvable problems the difference 
between the use of abstraction and no abstraction is less dramatic, although ALPINE 
has solved more of the problems in considerably less time than PRODIGY. 
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Figure 5.6: Total CPU Times in the Robot Planning Domain 

While the time-bound graph provides a good comparison of the overall perfor- 
mance of several configurations, it does not provide any comparison of how the con- 
figurations compare on different sized .problems or how different configurations will" 
scale as the problems get harder. To provide such a comparison, the average solution 
time and average solution length are graphed against increasing solution size. The 
actual difficulty of a problem depends on many factors, including the size of the search 
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space, the solution length, the number of goal conjuncts, the size of the initial state, 
the degree of interaction among the goals, etc, and a more thorough analysis should 
probably take into account all of these aspects. However, since there is no widely 
accepted measure of problem complexity and there is a reasonably close correspon- 
dence between solution length and problem difficulty, these graphs use the average 
solution length of the three different configurations as the measure of the complexity 
of a problem. To reduce the variation in problem difficulty, the,problems of different 
sizes are partitioned into larger sets. Thus, the problems that have a solution length 
between 1 and 20 are grouped into one set, and the problems with solution lengths 
between 21 and 40 are grouped into one set, and so on. The average time and solution 
length are then computed on these sets of problems. 

Figure 5.7 shows the average solution time and average solution length as the 
problems increase in complexity. The graph on the left shows the average solution 
time on the 206 problems that could be solved by any system, and the graph on the 
right shows the average solution length on the 202 problems that could be solved 
by all systems. (Including problems that exceeded the time bound in the average 
solution time underestimates the average, but provides a better indication of overall 
performance than if these problems were excluded.) The average solution-time graph 
shows that on simple problems PRODIGY, both with and without control rules, per- 
forms about the same or slightly better than ALPINE, but as the problems become 
harder the use of abstraction clearly pays off. PRODIGY's better performance on the 
simpler problems is due to the added overhead of selecting and using the abstractions 
on problems for which the abstraction provides little benefit. The average solution- 
length graph shows that overall ALPINE produces solutions that are slightly better 
than PRODIGY (on average up to 10% shorter), but they are quite close and in some 
cases the solutions are worse. 

5.2.2    Machine-Shop Scheduling Domain 

This section describes the abstractions generated by ALPINE in the machine-shop 
process planning and scheduling domain. As described in Section 2.3, the domain 
involves planning and scheduling a set of machining operators on a set of parts being 
manufactured. The complete specification of this domain can be found in Appendix C. 
There are a few minor syntactic difference between the problem space used in the 
experiments and Minton's original definition of the problem space. These differences 
are described in the appendix. 

- ALPINE finds two useful types of-abstraction imthis domain. First, in many cases 
it can separate the top-level goals into separate abstraction levels, which reduces the 
search for a valid ordering of the operations. Second, it separates the process planning 
(the selection and ordering of the operations on the parts) from the actual scheduling 
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Figure 5.7: Average Solution Times and Lengths in the Robot Planning Domain 

of the operations (only one part can be assigned to one machine at a given time). 
This allows the problem solver to find a legal ordering of the operators before it even 
considers placing the operations in the schedule. 

In constructing the abstraction hierarchies for this domain, ALPINE uses 14.9 CPU 
seconds to perform the one-time preprocessing of the domain. To construct the ab- 
straction hierarchies for each of the test problems requires an average of 1.4 CPU 
seconds and ranges from 0.4 to 3.8 CPU seconds. The problem-solving times reported 
in this chapter include the time required to construct an abstraction hierarchy, but 
not the time required to perform the preprocessing. 

Consider the following problem in the scheduling domain, which involves making 
two parts: 

(and (has-hole d  (4 mm)  orientation-4) 
(shape d cylindrical) 
(surface-condition e smooth) 
(painted d (water-res white))) 

Part d needs a hole and needs to be made cylindrical and painted white. Part e 
simply needs to be made smooth. The complete specification of this problem (#181) 
is given in Appendix C. The resulting abstraction hierarchy for this problem is shown 
in Figure 5.8. The hierarchy separates the selection and ordering of the various 
operations and performs the scheduling last. 
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Level 4 (shape object  shape) 

Level 3 (has-hole object width orient) 

Level 2 
(painted object color) 

(surface-condition object condition) 

Level 1 (temperature object temp)    (clampable object machine) 

Level 0 
(idle machine time) 

(scheduled object machine time)    (last-scheduled object time) 

Figure 5.8: Abstraction Hierarchy for the Machine-Shop Problem 

This abstraction produces a considerable improvement in problem-solving per- 
formance. The results are shown in Table 5.3, where ALPINE solves the problem 
significantly faster with much less search. The problem solving is broken up into five 
levels, where the distribution of search and solution length is as shown in table 5.4. 

System CPU Time (sec.) Nodes Searched Solution Length 
Prodigy 164.7 5150 9 
Prodigy + Alpine 7.0 39 9 

Ratio: 23.4 : 1 132.1 : 1 1 : 1 

Table 5.3: Performance Comparison for the Machine-Shop Problem 

Level 4 Level 3 Level 2 Level 1 Level 0 Total 
Nodes Searched 6 8 12 5 8 39 
Solution Lengths 1 1 2 1 4 9 

Table 5.4: Breakdown of the Abstract Search for the Machine-Shop Problem 

This section provides a comparison analogous to the one for the extended robot 
planning domain described in the last, section. ;It compares the performance of ALPINE 
to PRODIGY with no control knowledge, and PRODIGY with.a set of hand-coded 
control rules. The hand-coded rules are the same rules that were used in the original 
comparisons with the EBL system [Minton, 1988a]. All the configurations were run 
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on 250 randomly generated problems including the 100 problems used for testing the 
EBL system. 

The first comparison, shown in Figure 5.9, graphs the total time against an in- 
creasing time bound for the solvable and the unsolvable problems. On the 186 solv- 
able problems, ALPINE performs better than PRODIGY both with and without control 
knowledge. On the 64 unsolvable problems, ALPINE performs better than PRODIGY 
without control knowledge. With control knowledge PRODIGY can quickly show for 
most of the problems i,hat the problems have no solution. After 600 CPU seconds 
ALPINE and PRODIGY with control knowledge have used the same total time, but 
the slopes of the lines at 600 seconds show that ALPINE has completed more of the 
problems. This can be explained by the fact that control knowledge can often imme- 
diately determine that a problem is unsolvable, while the use of abstraction requires 
completely searching at least the most abstract space to determine that a problem 
is unsolvable. If there is no control rule to identify an unsolvable problem, then 
PRODIGY without using abstraction would have to search the entire space. Thus, the 
control knowledge can determine that a problem is unsolvable quickly, but the use of 
abstraction produces better coverage. 
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Figure 5.9: Total CPU Times in the Machine-Shop Domain 

The second comparison, shown in Figure 5.10, graphs the average solution time 
and average solution length against increasing problem size. On the average solution 
length for the 163 problems that could be solved by all the configurations, ALPINE pro- 
'duces slightly shorter solutions than PRODIGY with and without control knowledge. 
On the average solution time for the 186 solvable problems, PRODIGY does well on 
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the easier problems, but performs poorly as the problems get harder. PRODIGY per- 
forms slightly better on the simplest problems because of the overhead of generating 
and using the abstraction hierarchies. Using control knowledge improves PRODIGY's 
performance considerably, but ALPINE still performs better than the other two config- 
urations. ALPINE has trouble with a few of the more difficult problems because as the 
problems get larger, there are more constraints on the abstraction hierarchy -and this 
results infewer abstraction levels.-In many cases the abstraction hierarchy is overcon- 
strained and there are better ordered monotonic-abstraction hierarchies that ALPINE 
does not produce. An extension to ALPINE that avoids this problem is described in 
Section 7.2.1. 
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Figure 5.10: Average Solution Times and Lengths in the Machine-Shop Domain 

5.3     Comparison of ALPINE and EBL 

A significant amount of work in PRODIGY has focused on learning search control to 
reduce search. Minton [1988a] developed a system called PRODIGY/EBL that learns 
search control rules using explanation-based learning. More recently, Etzioni [1990] 
developed a system called STATIC that generates control rules using partial evaluation. 
This section compares the use of the-abstractions generated by ALPINE to these two 
systems for learning search control knowledge. 

The learning systems are compared in the machine-shop scheduling domain that 
was described in the previous section.  The comparisons below mirror the ones de- 
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scribed in the last section. In addition to PRODIGY alone, with the hand-coded control 
rules (HCR), and with ALPINE's abstractions, the graphs also include PRODIGY with 
the control rules produced by EBL, with the control rules produced by STATIC, and 
the combination of ALPINE's abstractions and the hand-coded control rules. A com- 
parison in the extended STRIPS domain was not included because of the differences 
between the original domain and the one used in this thesis. Such a comparison 
would require rerunning both EBL "and STATIC to learn-new sets of control rules for. 
the modified domain. 

The first comparison, shown in Figure 5.11, graphs the total time against an in- 
creasing time bound for the solvable and unsolvable problems. On the solvable prob- 
lems, ALPINE without any control knowledge performs about the same as STATlC's 
control rules and significantly better than the use of EBL's control rules. On the un- 
solvable problems, STATIC and EBL perform the same as the hand-coded control rules 
and use about the same total amount of time on the unsolvable problems, but ALPINE 
completes more of the problems after 600 CPU seconds than the other configurations. 
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Figure 5.11: Total CPU Times for the Learning Systems in the Machine-Shop Domain 

The second comparison, shown in Figure 5.12, graphs the average solution time 
and average solution length against increasing problem size for the solvable prob- 
lems. As the problems get harder, ALPINE performs significantly better than EBL and . 
slightly worse than STATIC on the average solution time. Both ALPINE and STATIC 
perform well, but have trouble solving some of the harder problems. The solutions 
produced by PRODIGY alone and PRODIGY with the STATIC control rules and the 
hand-coded control rules are slightly longer than the rest, although the differences 
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Figure 5.12: Average Solution Times and Lengths for the Learning Systems in the Machine- 
Shop Domain 

are small. The obvious next step, which will be discussed in Section 7.3.3, is to 
combine these systems in order to learn the control knowledge to use in the abstract 
spaces. 

The integration of the abstraction and the learning of control knowledge assumes 
that these approaches provide complementary sources of knowledge. While these sys- 
tems have not yet been fully integrated, the figures above also graph the combination 
of the abstraction with the hand-coded control knowledge to demonstrate that the 
integration will provide improved performance. The combination of the abstraction 
and control knowledge, as shown in Figure 5.11, produces significantly better perfor- 
mance than any system alone on both the solvable and unsolvable problems. For the 
solvable problems, Figure 5.12 shows that as the complexity of the problems increase, 
the combined system allows the problem solver to solve the problems in time linear to 
the problem complexity. This combination improves performance because the control 
rules provide search guidance within an abstraction level and the use of abstraction 
provides better coverage at a lower cost than just using the control rules. 

5.4    Comparison of ALPINE and ABSTRIPS 

This section compares the abstractions generated by ALPINE to those generated by 
ABSTRIPS and shows that ALPINE produces better abstractions with less specific do- 
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main knowledge than ABSTRIPS. ABSTRIPS was the first system that attempted to 
automate the construction of abstraction hierarchies for problem solving and was only 
applied to the STRIPS robot planning domain. The resulting abstraction hierarchies 
were then used for problem solving in an extended version of the STRIPS planner 
[Fikes and Nilsson, 1971]. This section compares the abstraction hierarchy generated 
by ABSTRIPS to the dynamically-tailored abstraction hierarchies generated by ALPINE 
•in the STRIPS domain. The STRIPS domain is a simpler version of the robot planning 
domain described in Section 5.2.1 and consists of a robot that can push boxes around 
and between a set of rooms. The abstractions generated by each system are then 
tested empirically in the PRODIGY problem solver. 

ABSTRIPS is given an initial partial order of the predicates for a domain and then 
performs some analysis on the domain to assign criticality values to the preconditions 
of each of the operators. The criticalities specify which preconditions of each opera- 
tor should be ignored at each abstraction level. Since the abstractions are formed by 
dropping preconditions, the resulting abstraction spaces are relaxed models, as de- 
scribed in Section 3.1.2. The technique used to construct the abstraction hierarchy is 
described in detail in Section 6.2.1. The basic idea is to separate those preconditions 
that could not be achieved in isolation by a short plan and then use the given partial 
order to assign criticalities to the remaining preconditions. 

The abstractions generated by ALPINE differ from ABSTRIPS in several important 
ways. First, ALPINE completely automates the construction of the abstraction hierar- 
chies from only the initial definition of the problem space, while ABSTRIPS requires an 
initial partial order to form the abstractions. Second, ALPINE forms abstractions that 
are tailored to each problem, and ABSTRIPS constructs a single abstraction hierarchy 
for the entire domain. Third, ALPINE forms reduced models where each level in the 
abstraction hierarchy is an abstraction of the original problem space, while ABSTRIPS 
forms relaxed models. 

The best way to compare the abstractions generated by the two systems is to 
consider an example.   The example below is taken from one of the 200 randomly 
generated test problems used to compare the systems. The goal state consists of five 
goal conjuncts as follows: 
(and (in-room a rooml) 

(status door56 closed) 
(status doorl2 closed) 
(in-room robot room3) 
(in-room b room6)) 

The initial state for the problem is shown in Figure 5.13. The complete specification 
of this problem (#88) is given in Appendix D. This problem is difficult because the 
doors must be closed after the boxes have been placed in the correct rooms and the 
robot must be on the correct side of the door when it is closed. 
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Figure 5.13: Initial State for the STRIPS Problem 

The abstraction hierarchies generated by each system are shown in Figure 5.14. 
For the entire problem domain, ABSTRIPS uses the same four-level abstraction hier- 
archy. The most abstract space consists of all the static predicates (the predicates 
that cannot be changed), the second level consists of the preconditions that cannot 
be achieved by a short plan. This includes all of the in-room preconditions, and 
some of the next-to and status preconditions. The third level consists of the re- 
maining status preconditions that can be achieved by a short plan, and the fourth 
level contains the remaining next-to conditions. 

ALPINE can build finer-grained hierarchies using the type hierarchy (Section 4.4.1) 

connects 

pushable 

inroom 
status  next-to 

status 

next-to 

(connects door room room) 

(inroom box room)  (pushable box) 

(inroom robot room) (status door status) 

(next-to box door) 

(next-to robot door) 

(next-to box box) 

(next-to robot box) 

ABSTRIPS ALPINE 

Figure 5.14: Abstraction Hierarchies Generated by ABSTRIPS and ALPINE 
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to separate literals with the same predicate but different argument types. The abstrac- 
tion hierarchy built by ALPINE for this problem consists of a three-level abstraction 
hierarchy (the abstraction hierarchy selection heuristics described in Section 4.4.4 
combine the bottom two levels into a single level). The most abstract space con- 
sists of all the static literals and the (in-room box room) literals. The next level 
contains both the (in-room robot room) and the (status door status) literals. 
•These two sets of literals get combined to satisfy the ordered monotonicity property 
since it may be necessary to get the robot into a particular room to open or close a 
door. Finally, the last level contains the next-to literals for both the robot and the 
boxes. ALPINE uses 12.3 CPU seconds for the one-time preprocessing of this domain. 
The time required to construct an abstraction hierarchy for each problem ranges from 
0.3 to 2.8 CPU seconds and is 1.2 CPU seconds on average. 

The example problem illustrates a problem with the abstraction hierarchies that 
are formed by ABSTRIPS. Problem solving using this abstraction hierarchy proceeds 
as follows. Since ABSTRIPS only drops preconditions and not effects of operators, all 
the goals are considered in the abstract space. The system constructs a plan to move 
box a into rooml, closes the door to the room, and then moves the robot through 
the closed door. When the system is planning at this abstraction level it ignores all 
preconditions involving door status, so it does not notice that it will later have to 
open this door to make the plan work. When the plan is refined to the next level of 
detail the steps are added to open the door before moving the robot through the door, 
deleting a condition that was achieved in the abstract space (which is a violation of 
the monotonicity property). At this point the problem solver would need to either 
backtrack or insert additional steps for closing the door again. In fact, the original 
ABSTRIPS system would not have even noticed that it had violated the precondition, 
and would simply produce an incorrect plan [Joslin and Roach, 1989, pg.lOO]. 

ALPINE would first solve this problem in the abstract space by generating the plan 
for moving the boxes into the appropriate rooms. At the next level it would deal with 
both closing the doors and moving the robot. If it closed the door from the wrong 
side and then tried to move the robot to another room, it would immediately notice 
the interaction since these goals are considered at the same abstraction level. After 
producing a plan at the intermediate level it would refine this plan into the ground 
space by inserting the remaining details, which consists of the conditions involving 
next-to. 

To illustrate the difference between ALPINE's and ABSTRIPS's abstractions, the 
-use of these abstractions are compared in PRODIGY. Strictly speaking, this is not a 
fair comparisonbecause the abstraction hierarchies generated by ABSTRIPS were in- 
tended to be used by the STRIPS problem solver. STRIPS employed a best-first search 
instead of a depth-first search, so the problem of expanding an abstract plan that is 
then violated during the refinement of that plan would be less costly. Nevertheless, 
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the comparison emphasizes the difference between the abstraction hierarchies gener- 
ated by ALPINE and ABSTRIPS and demonstrates that a poorly chosen abstraction 
hierarchy can degrade performance rather than improve it. 

First consider the results on the example problem described above. Table 5.5 
shows the CPU time, nodes searched and solution length. ALPINE produces a small 
performance improvement'over PRODIGY and generates shorter solutions. In contrast 
ABSTRIPS takes almost .6 times longer than PRODIGY, although it too ;produces the 
same length solution as ALPINE. ' 

System CPU Time (sec.) Nodes Searched Solution Length 
Prodigy 14.5 259 25 
Prodigy -f Alpine 10.2 114 19 
Prodigy -f Abstrips 83.0 1,631 19 

Table 5.5: Performance Comparison for the STRIPS Problem 

Figure 5.15 provides a comparison of the performance of PRODIGY without using 
abstraction, using the abstractions produced by ABSTRIPS, and using the abstractions 
produced by ALPINE on 200 randomly generated problems in the robot planning 
domain. PRODIGY was run in each configuration and given 600 CPU seconds to 
solve each of the problems.   Out of the 200 problems, 197 of the problems were 
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Figure 5.15: Total CPU Times in the STRIPS Domain 
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solvable in principle. The graph plots the total time spent on the solvable problems 
against increasing time bounds. It is clear from the graph that PRODIGY performs 
quite well on these problems even without abstraction. This is largely due to the 
fact that problems in this domain are much like the Tower of Hanoi, in that the 
problem solver only needs to search a small portion of the search space since most 
mistakes can be undone by adding additional steps. The graphs shows that the* 
use of ABSTRIPS' abstractions significantly »degrades performance, while ALPINE's 
abstractions improve performance enough that all 197 solvable problems are solved 
within 150 CPU seconds. (After 600 CPU seconds, PRODIGY has still not solved 
two of the problems.) None of the systems were able to determine that the three 
unsolvable problems were unsolvable. 

Figure 5.16 shows the average solution times for the 197 solvable problems and 
the average solution lengths for the 153 problems that were solved by all three config- 
urations. These graphs show that ALPINE produces shorter solutions in less time than 
either PRODIGY or ABSTRIPS. It is worth noting that while ABSTRIPS' abstractions 
significantly increased the problem solving time, they did improve the quality of the 
solutions. With respect to problem-solving time PRODIGY performed quite well, but 
as in the Tower of Hanoi, PRODIGY achieved this performance by trading solution 
quality. On the hardest set of problems, PRODIGY produces solutions that were on 
average fifty percent longer than ALPINE. 
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Chapter 6 

Related Work 

This chapter describes the related work on abstraction in problem solving. The first 
section compares the approaches to problem solving using abstraction that are most 
closely related to the one described in this thesis. The second section compares 
the approach implemented in ALPINE for generating abstractions to other related 
techniques. The third section describes the related work on properties of abstractions. 

6.1    Using Abstractions for Problem Solving 

There are a variety of ways in which abstractions can be used in problem solving. 
Chapter 3 described an approach to using abstractions for hierarchical problem solv- 
ing. This section compares this technique to the most closely related problem-solving 
techniques. 

6.1.1    Abstract Problem Spaces 

One approach to hierarchical problem solving, which was presented in Chapter 3, is 
to employ a set of well-defined abstraction spaces to solve problems at different levels 
of abstraction. An abstraction space can be either a simplification or reformulation 
of the original problem space, such as the relaxed and reduced model described in 
Section 3.1.2. A problem is usually solved in an abstract space and then refined at 
successively more detailed levels. 

Planning GPS [Newell and Simon, 1972] was the first system to employ this ap- 
proach to problem solving. The system was applied to the domain of propositional 
logic problems. In this logic domain, GPS is given an abstract problem space that ig- 
nores the logical connectives in the formulas. A problem is first solved in this abstract 
space and then refined into the ground space to replace the abstract operations with 
the appropriate operations on the connectives. In contrast to the abstract problem 
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spaces generated by ALPINE, the abstraction of the prepositional logic problems does 
not just ignore conditions, but provides a different representation of the problem. 
While GPS provided the first automated use of abstraction for problem solving, it did 
not automate the construction of the abstractions. 

ABSTRIPS [Sacerdoti, 1974] also employs abstract problem spaces for hierarchical 
problem solving. The abstraction spaces for a problem domain are represented by 
assigning criticalities, numbers indicating the relative difficulty, to the preconditions 
of each operator. The system uses these criticalities to plan abstractly. First, an 
abstract plan is found that satisfies only the preconditions of the operators with the 
highest criticality values. The abstract plan is then refined by considering the pre- 
conditions at the next level of criticality and inserting steps into the plan to achieve 
these preconditions. The process is repeated until the plan is expanded to the lowest 
level of criticality. If a solution to a subproblem cannot be found, the system starts 
over and reruns the problem solver to find a different abstract solution. Hierarchical 
PRODIGY uses the same basic approach to problem solving, but there are two signifi- 
cant differences. First, Hierarchical PRODIGY uses reduced models instead of simply 
dropping preconditions, which allows it to simplify the goals of a problem in an ab- 
stract space. Second, it maintains the dependency structure of the problem-solving 
trace so that the problem solver can efficiently backtrack across abstraction levels. 

The motivation behind this general approach to problem solving is to use the 
abstractions to divide up a problem into a number of smaller subproblems. A problem 
is first solved in a simpler abstraction space and the abstract solutions can then be 
used to form a set of subproblems at the next level of abstraction. The subproblems 
are then solved at that level and the solutions in turn form subproblems at the next 
level. This process is repeated until the problem is solved in the original problem 
space. Polya [1945] was one of the first to describe this idea of decomposing a problem 
into a number of simpler subproblems. Since then several people have shown that 
dividing a problem into subproblems can produce significant reductions in search 
[Newell et al, 1962, Minsky, 1963]. These analyses implicitly assume a problem 
can be divided into small, equal-sized, independent subproblems that can be solved 
without backtracking. Section 3.3 both formalizes this analysis and identifies a set of 
sufficient conditions to achieve significant reductions in search. 

6.1.2    Abstract Operators 

Another approach to hierarchical problem solving is to first build a plan out of a 
set of abstract operators and then refine the plan by selectively expanding individual 
operators into successively more detailed ones. The refinement is done using a set 
of action reductions [Yang, 1989], which specify the relationship between an abstract 
operator and the refinements of that operator. This approach differs from the previ- 
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ous one in that it does not require that a plan is expanded completely at one level 
of abstraction before refining it to the next level. Instead there are a set of abstrac- 
tions for each operator, and each instance of an operator in an abstract plan can be 
expanded to a different level of detail. Since these systems do not employ a set of 
well-defined abstraction spaces, there is no notion of solving a problem at one level 
before refining the plan to the next level. This -approach has been used extensively 
in least-commitment problem solvers and the systems that:employ this approach .in- 
clude NOAH [Sacerdoti, 1977], MOLGEN [Stefik, 1981], and NONLIN iTate, 1976]. In 
all of these problem solvers, the abstractions must be hand-crafted for each problem 
domain. 

A problem with the use of action reductions for hierarchical problem solving is 
that it only provides a heuristic about the order in which preconditions of various 
operators should be expanded and does not necessarily provide a coherent abstraction 
of a problem. A problem solver may expand one part of the plan down to a given 
level and then work on a different part of the plan that then undoes conditions that 
were needed in the part of the problem already solved. This is equivalent to violating 
the monotonicity property. As Rosenschein [1981] points out, seemingly correct plans 
at one level can be expanded into incorrect plans at lower levels. This undermines 
the rationale for hierarchical planning of reducing complexity through factorization 
since "unexpected global interactions" can arise. NOAH dealt with this problem by 
maintaining a hierarchical kernel, which records for each node the conditions that 
were tested in order to apply the operator at that node. Then, before any node is 
expanded further, the hierarchical kernel .for that node is tested to see if the appro- 
priate conditions still hold. In the case where the hierarchical kernel does not hold, 
NOAH had to reachieve the missing conditions or backtrack to the point it undid one 
or more of these conditions. In general, reachieving the deleted conditions or finding 
another way to solve the problem that does not violate the conditions is a difficult 
problem. 

There is nothing inherent in least-commitment problem solvers that prevents them 
from using action reductions to implement abstract problem spaces. SIPE [Wilkins, 
1984, Wilkins, 1986] uses a more explicit encoding of the abstractions where the 
domain is partitioned into literals at different abstraction levels and operators for 
achieving those literals. While SIPE can still expand the operators in a plan to different 
levels of abstraction, the domains in SIPE are designed such that it will never undo 
some condition in a more abstract space in the process of refining some part of the 
plan. 

However, Wilkins [1986] identified another problem that can arise with least- 
commitment problem solvers even when using abstraction spaces as in SIPE. The 
problem (called hierarchical inaccuracy [Yang, 1990]) is that since the planner can 
expand the operators in a plan to different levels of detail, it may expand one part of 
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the plan to too detailed a level before another part of the same plan is expanded at all. 
The result is that state inconsistencies can arise. For example, in one part of the plan 
the system may decide to move a robot from one room to another, while an earlier part 

■of the plan, which has not been expanded, may also require moving the robot. Since 
the earlier part of the plan has not been expanded to the level of detail before the later 
part of the plan, the system may plan to move the robot from a room that the robot 

"will have already_left. Wilkins proposed several solutions to this problem, but they all 
require noticing when these situations can arise and annotating the operators in order 
to prevent the expansion at too detailed a level before earlier parts of the plan have 
been expanded to that level. Yang [1990] proposed an automated approach to avoid 
this problem that involves preprocessing a domain to find a set of syntactic restrictions 
on the action reductions. Problem solvers that employ abstraction problem spaces, 
such as Hierarchical PRODIGY and ABSTRIPS, avoid this problem by always expanding 
the plan at each level in a left-to-right order. 

6.1.3     Macro Problem Spaces 

Another problem-solving method, similar to the use of abstract problem spaces, is the 
use of macro problem spaces. Instead of abstracting operators to form an abstract 
problem space, operators are combined into macro operators to form a macro problem 
space [Korf, 1987]. This approach is similar to using abstraction spaces in that 
a problem is mapped into an abstract space, which is defined by a set of macro 
operators, and then solved in the abstract space. However, unlike the use of abstract 
problem spaces, once a problem is solved in the macro space, the problem is completely 
solved since the macros are defined by operators in the original problem space. 

Korf [Korf, 1987] shows that a single level of abstraction can reduce the total 
search time from 0{n) to 0(y/n), and he shows that multiple levels of abstraction 
can reduce the search time from 0(n) to 0(logn), where n is the number of states and 
the time is proportional to the number of states searched. These results are based on 
an average case analysis that assumes the distribution remains constant over different 
levels of abstraction and the number and ratio of the sizes of the abstraction spaces 
are optimal. 

Korf's analysis assumes that the mapping between an abstract plan and a spe- 
cialization of the abstract plan is trivially known and a specialization always exists. 
In contrast, a hierarchical problem solver may expend a great deal of work searching 

/for an appropriate specialization and in some cases no corresponding specialization 
exists. Consider the route planning domain that Korf describes in [Korf, 1987]. The 
problem is to plan a route between any two points where the operators are used to 
move between adjacent intersections. By building up a set of macro operators he 
creates abstract operators that move between more distant points. Planning involves 
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mapping the original problem into an abstract problem and then finding a route be- 
tween the points in the abstract space. Once this abstract solution is found, the 
solution is found. Each macro operator is composed of the individual operators that 
achieve the macro so there is no additional work to map an abstract solution into a 

' detailed solution. The difficultly with this approach is in finding a good set of macro 
operators. For the domains in which a set of macros can be defined, this technique 
will be useful, but there are few domains that -are like the route planning domain and 

. have a sufficiently regular structure to define a set of macro spaces. &       - - 

6.2     Generating Abstractions for Problem Solving 

This section compares the automated approach to generating abstractions described 
in this thesis to other related techniques. The related work is compared along three 
dimensions. First, what is the form of the knowledge produced by the technique 
(e.g., abstractions, aggregations, problem reductions, goal orderings). Second, how 
is this knowledge used for problem solving (e.g., subgoals, control rules, evaluation 
functions). Third, what is the approach to producing this knowledge (e.g., analysis 
of interactions, partial evaluation). This section is loosely organized by the type of 
knowledge produced by the various approaches. 

6.2.1    Abstractions 

ABSTRIPS [Sacerdoti, 1974] was the first attempt to automate the formation of ab- 
straction hierarchies for hierarchical planning. However, the system only partially 
automates this process. The user provides the system with an initial partial order of 
predicates, which is used to assign criticalities automatically to the preconditions of 
ground-level operators. ABSTRIPS places the static literals, literals whose truth value 
cannot be changed by an operator, in the highest abstraction space. It places literals 
that cannot be achieved with a "short" plan in the next highest abstraction space. 
And it places the remaining literals at lower levels corresponding to their place in 
the user-defined partial order. It determines whether a short plan exists by assuming 
that the preconditions higher in the partial order hold and attempts to show the 
remaining conditions can then be solved in a few steps. The same literal in the pre- 
conditions of two different operators can be placed at two different levels because the 
difficulty of achieving a particular precondition depends on the other preconditions 
of the operator in which it occurs. • '    ... 

The essence of the approach in ABSTRIPS is the short-plan heuristic, which sepa- 
rates the details from the important information. The system automatically produces 
a three-level abstraction hierarchy, with the static literals at the top of the hierarchy, 
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the "important" literals next, and the details at the bottom. Any further refinement 
of levels comes from the user-defined abstraction hierarchy. In contrast, ALPINE can 
create a hierarchy of abstractions in which the levels of the hierarchy are successively 
more detailed. As shown in Section 5.4, ALPINE produces more effective abstractions 
with less knowledge than ABSTRIPS. 

Christensen [1990] developed a system called PABLO that also generates hierarchies 
- >of abstractions for hierarchical problem solving. The system uses a technique called 

predicate relaxation, where it determines the number of steps needed to achieve each 
predicate by partially evaluating the operators. The problem solver solves a problem 
by focusing at each point on the part of the problem that requires the greatest num- 
ber of steps. This general approach is similar to ABSTRIPS in that the abstractions 
are based on the number of steps needed to achieve the different conditions, but this 
approach allows successively more detailed abstraction spaces. A potential limitation, 
however, is that it may be expensive to partially evaluate the operators in more com- 
plex problem spaces, especially ones that involve recursive operators. While PABLO 
bases the abstractions on the length of the plan to achieve a goal, ALPINE forms ab- 
stractions based on partitioning the problem such that the conditions at one level do 
not interact with the conditions at a more abstract level. 

Unruh and Rosenbloom [1989, 1990] present a weak method for SOAR [Laird et a/., 
1987] that dynamically forms abstractions by dropping applicability conditions of the 
operators. If SOAR is working on a goal and reaches an impasse, a point in the search 
where it does not know how to proceed, then it performs a look-ahead search to resolve 
this impasse. Since this search can be quite expensive, an alternative is to perform 
a look-ahead search that ignores all of the unmatched preconditions. The choices 
made in the look-ahead search can then be stored by SOAR's chunking mechanism 
and the chunks are then used to guide the search in the original space. If the look- 
ahead search cannot distinguish between two choices, the unmatched conditions are 
iteratively expanded. This approach forms abstractions based on the heuristic that 
the more operators there are between a condition and the goal, the more likely it is 
to be a detail. When a useful abstraction is found it will be stored by the chunking 
mechanism. The system dynamically abstracts the operators, not to form abstract 
problem spaces, but to learn control heuristics. 

A potential problem with the approach implemented in SOAR is that since the ab- 
stractions are formed by ignoring the preconditions that were unmatched in solving 
one particular problem, an abstraction that is effective in one situation could degrade 

/••■ performance in other situations. In contrast, since ALPINE constructs ordered mono- " 
tonic abstraction hierarchies based on the potential interactions between the literals ' 
in a problem space, ALPINE's abstractions are more likely to ignore the appropriate 
conditions. The more stringent requirements on the abstractions formed by ALPINE, 
however, prevent it from finding abstractions in problem spaces in which SOAR can 
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produce abstractions (e.g., the eight-puzzle). 
Anderson [1988] developed a system called PLANEREUS that automatically gen- 

erates hierarchies of abstract operators and objects. The system constructs operator 
hierarchies by examining the operators that share common effects and forming new 
abstract operators that contain only the shared preconditions. Similarly, object hier- 
archies are formed by adding a new abstract object type when two operators perform 
the same operations on different objects. The operator and object hierarchies are then 
used to construct abstract macros by generalizing a particular-plan as far as possi- 
ble without losing the dependency structure of the plan. The resulting macros are 
then added to the operator hierarchy as new abstract operators which can be used to 
solve analogous problems in the future. The abstract operators, objects, and macros 
are then used for least-commitment hierarchical problem solving. PLANEREUS differs 
from ALPINE in at least two important ways. First, PLANEREUS generates operator 
and object hierarchies and macro operators, while ALPINE forms abstract problem 
spaces. Second, PLANEREUS forms abstract operators by ignoring the differences be- 
tween operators without regard to the difficulty of achieving those differences, while 
ALPINE drops conditions based on an interaction and dependency analysis of the 
entire problem space. 

ABSOLVER [Mostow and Prieditis, 1989] employs a set of abstraction transforma- 
tions to create abstractions of a problem. The resulting abstract models are then 
tested to see if they provide useful abstractions for use in an admissible search proce- 
dure [Pearl, 1984, Kibler, 1985]. The reduced or relaxed models are used to compute 
lower bounds and check solvability. The abstraction transformations include dropping 
preconditions, dropping goals, and dropping predicates from the problem space. The 
abstractions are selected using a generate-and-test procedure. Since ALPINE employs 
a more principled approach in deciding which conditions to ignore, it is more likely to 
find useful abstractions and could be used to select the abstractions for ABSOLVER. 
However, the set of abstractions that could be generated by ALPINE may be more 
restrictive than needed for producing admissible search heuristics. 

Hansson and Mayer [1989] use relaxed models to find intermediate subgoals to 
solve problems, such as the eight puzzle. They describe a system that drops conditions 
of the operators at random and the resulting relaxed models are then used to create 
intermediate subgoals. These subgoals are then used to simplify the original problem 
by searching to achieve each of the intermediate subgoals. Assuming that the abstract 
plan generated legal intermediate states, this approach reduces the search by replacing 
the original problem with a number of smaller ones. In contrast, ALPINE provides a 
more principled approach for determining which conditions should be dropped from 
a problem space, but ALPINE does not find a useful abstraction of the eight puzzle. 
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6.2.2 Aggregations 

An alternative to constructing abstractions for problem solving is to construct aggre- 
gations. An aggregation is formed by combining the primitive elements of a problem 
space into larger elements. For example, sequences of operators can be combined to 
form macro operators and objects can be combined into aggregate objects. Aggrega- 
tions provide a different type of abstraction that could be combined with the type of 
abstractions produced by ALPINE. 

A number of systems have explored the formation of macro operators for problem 
solving [Fikes et al, 1972, Korf, 1985b, Minton, 1985, Laird et al, 1986, Shell and 
Carbonell, 1989, Iba, 1989, Riddle, 1990, Guvenir and Ernst, 1990]. A macro operator 
is constructed by combining frequently used sequences of operators into a single op- 
erator. In most systems, these macro operators are then added to the original space. 
Adding macros to the original problem space can reduce the solution depth, but it 
has the side-effect of increasing the branching factor, which can reduce the overall 
performance [Minton, 1985]. 

There are also systems that construct aggregate objects for problem solving. The 
idea is to reduce the complexity of problem solving by reasoning about larger-grained 
objects. Benjamin et al. [1990] present an approach to constructing aggregate objects 
by identifying equivalence classes over certain features in the state space. The ap- 
proach is applied to the Tower of Hanoi puzzle to combine disks into macro objects. 
For example, the three-disk problem can be transformed into the two-disk problem 
by combining the two smallest disks into a single aggregate disk. This aggregation is 
equivalent to the abstraction of the Tower of Hanoi described in Section 3.4, but it is 
generated by a very different means. 

There has also been work on automatically generating aggregations for chess. One 
system, called CHUNKER [Campbell, 1988], groups pawn configurations into chunks 
and then plans in the abstract space by reasoning about the interactions between 
pawn chunks. Another system, called PLACE [Flann, 1989], forms aggregate objects, 
operators, and goals using an explanation-based generalization approach. 

6.2.3 Problem Reductions 

In many systems, abstraction spaces are used to find an abstract solution, which can 
then be used to divide a problem into a number of subproblems. Problem reduction 
is a related technique, where a problem is replaced by a number of easier to solve 
subproblems [Amarel, 1968]. 

Riddle [1990] developed a system that automates this type of problem reformu- 
lation by analyzing example solutions and identifying the "critical" subgoals of a 
problem, which correspond to the most constrained subgoals. This approach success- 
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fully automates some of the reformulations of the Missionaries and Cannibals problem 
that were first described by Amarel [1968]. 

Ruby and Kibler [Ruby and Kibler, 1989] developed a system called SteppingStone 
that also learns sequences of subgoals. SteppingStone employs the learned subgoal 
sequences only when the basic means-ends analysis problem solver fails to find a 
solution that does not involve undoing a previously achieved goal. If there are no 
appropriate, subgoals stored injtiemory, SteppingStone employs a brute-force search 
for a solution and uses the solution to learn a new sequence of subgoals. 

Both of these systems learn sequences of subproblems through experience and 
then apply them to future problem solving episodes. Although the use of problem 
reductions avoids the search for an abstract solution, each problem might require 
a different set of problem reductions. In fact, hierarchical problem solving can be 
viewed as a dynamic method for generating problem reductions. 

6.2.4    Goal Ordering 

There has been a variety of work on ordering goals for problem solving. This section 
reviews only the work that employs techniques for goal ordering that are related to 
the abstraction generation techniques described in this thesis. 

GPS [Ernst and Newell, 1969] is a means-ends analysis problem solver, which em- 
ploys a table of differences to select relevant operators and thus focus the search. The 
problem solving proceeds by attempting to reduce the differences between the initial 
state and goal. The problem of finding good orderings of the differences has been 
extensively explored in GPS [Eavarone, 1969, Goldstein, 1978, Ernst and Goldstein, 
1982]. The criterion for ordering the differences is to attempt to find an ordering such 
that achieving one difference will not affect a difference reduced by operators selected 
earlier in the ordering. This is related to the analysis performed by ALPINE, except 
the ordering of differences in GPS is based only on the effects of operators, while the 
construction of abstraction hierarchies in ALPINE is based on analysis of both the 
effects and preconditions of the operators. The constraints on a good difference or- 
dering in GPS are necessary, but not sufficient for the ordered monotonicity property. 
For example, in the Tower of Hanoi the techniques for producing good difference 
orders for GPS is only able to identify the positions of the different sized disks as 
good differences, but cannot produce a useful ordering of the disks. [Eavarone, 1969] 
presents a program that produces 24 possible difference orderings for the four-disk 
problem without any preferences among them. In contrast, ALPINE produces a-single 
hierarchy for-.the four-disk problem, which orders the disks from largest to smallest. 

Irani and Cheng [Irani and Cheng, 1987, Cheng and Irani, 1989] present an ap- 
proach to both ordering goals and augmenting the goals with additional information. 
The goal orderings are based on necessary interactions determined statically from the 
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operator definitions. For each problem the goal orderings are determined by back- 
propagating the goals through the operators to determine which of the other goals 
must already hold to apply the relevant operators. The goal conditions are first aug- 
mented with additional conditions that must also hold when the goal conditions are 
achieved. The augmented and ordered goals are then used in an admissible heuristic 
evaluation function. The augmentation of the goals is similar to the goal augmenta- 
tion performed in ALPINE (Section 4.4.3), but the approach to ordering the goals is 
much more similar to the analysis in PABLO [Christensen, 1990]. In addition, the use 
of the goal orderings is more similar to the way abstractions are used in ABSOLVER 
[Mostow and Prieditis, 1989]. 

Etzioni [Etzioni, 1990] developed a system called STATIC, which statically ana- 
lyzes the problem space definition to identify potential interactions. Based on these 
interactions, STATIC generates a set of search control rules for PRODIGY to guide the 
problem solving. The analysis is done by proving that a particular condition will nec- 
essarily interact with another condition and then constructing a control rule to avoid 
such an interaction. This analysis differs from the analysis performed by ALPINE, 
since the control rules are based on necessary interactions, while the abstractions are 
based on possible interactions. Also, the control rules are used to guide the search in 
the original space, while the abstractions are used for hierarchical problem solving. 

6.3    Properties of Abstractions 
Banerji and Ernst [1977a, 1977b] compared three similar problem solvers, GPS [Ernst, 
1969], Planning GPS [Newell and Simon, 1972], and ABSTRIPS [Sacerdoti, 1974]. They 
developed a formal model of these systems that makes some additional assumptions 
not actually present in the three problem solvers. It is interesting to note that the 
additional assumptions correspond to enforcing the ordered monotonicity property. 
In the case of GPS, this means that after a given difference is solved, the problem solver 
is prevented from reintroducing that difference. In the case of ABSTRIPS, states are 
abstracted in the same way as the preconditions of operators, and when solving a 
problem at criticality level i, the problem solver rejects any problem with criticality 
level greater than i. 

Using the formal models of these problem solvers, Banerji and Ernst then showed 
that all three of these systems can solve the same class of problems - those that are 
well-stratified. A well-stratified problem is one that, for a given abstraction hierarchy," 
can be divided up into subproblems and solved strictly in the order imposed by the 
hierarchy. They go on to show that if a problem is well-stratified, then it has & totally 

-ordered solution [Ernst, 1969], which requires that once a difference is reduced it need 
not be reintroduced to solve the problem. Ernst [1969] showed that the combination of 
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a good difference ordering and the existence of a totally ordered solution are sufficient 
for GPS to solve a problem. Since the constraints on a good difference ordering are 
subsumed by the constraints on the ordered monotonicity property (Section 6.2.4), it 
follows that the ordered monotonicity and the existence of a totally ordered solution 
are sufficient for Hierarchical PRODIGY to solve a problem. This is not surprising since 
the restrictions on a problem that are needed to guarantee completeness (Section 3.2) 
are equivalent to requiring that-a problem is well-stratified. 

In Korf's work'on generating macros [Korf, 1985b], he identified a property called 
serial decomposability, which is sufficient to guarantee that a set of macros can serialize 
a problem. A problem is said to be serializable if there exists an ordering among the 
goals, such that once a goal is satisfied, it need never be violated in order to satisfy the 
remaining goals. A problem space is serially decomposable if there exists an ordering 
of the operators such that the effect of each operator only depends on the state 
variables (e.g., location of a tile in the eight puzzle) that precede it in the ordering. 
If a problem space is serially decomposable, then there exists a set of macros that 
can make any problem serializable. Serializability is a property of goals, while the 
ordered monotonicity property is a property of an abstraction hierarchy. However, 
serializability is related to ordered monotonicity in that if a set of goals is serializable, 
then there exists a corresponding ordered monotonic abstraction hierarchy. But the 
ordered monotonicity is weaker than serializability since the converse does not hold. 
The ordered monotonicity property does not guarantee that once a goal is satisfied, 
it need never be violated. It only guarantees that once a goal is satisfied at one level, 
it will not be violated while refining a plan at a lower level, but it may be necessary 
to backtrack to the more abstract level if it cannot be refined. 
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Chapter 7 

Conclusion 

This thesis identified several useful properties of abstraction hierarchies, presented 
a completely automated approach to generating abstractions based on these proper- 
ties, and described how the abstractions can be used for problem solving. The thesis 
showed analytically that under an ideal decomposition of a problem the use of hierar- 
chical problem solving can produce an exponential-to-linear reduction in search, and 
it provided comprehensive empirical results which demonstrate that the generated 
abstractions produce better solutions with significantly less search in several different 
problem domains. 

While the techniques are effective in generating useful abstractions for a variety 
of problem solving domains, they are not without their limitations. This chapter 
describes some of the limitations of both the theory and approach for generating 
abstractions, presents some ideas about how to produce better abstraction hierarchies 
automatically, and describes how the abstractions could be used for learning as well as 
planning. The chapter is divided into four sections. The first three sections describe 
the limitations and extensions of the theory, the generation of better abstractions, and 
the use of abstraction hierarchies in problem solving and learning. The last section 
concludes with a discussion of where this thesis leaves off and what remains to be 
done. 

7.1     Theory of Abstraction 

The theory presents two properties of abstraction hierarchies that relate a problem 
space to the possible abstractions of that problem space. The first property, mono- 
tonicity, captures the idea that the structure of the abstract solution should be pre- 
served as it is refined. The second property, ordered monotonicity, is a restriction of 
the first and requires not only that the structure is preserved, but also that the space 
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is partitioned and ordered such that achieving the literals at one level does not inter- 
act with the literals in a more abstract level. The algorithm presented in this thesis 
generates abstraction hierarchies that satisfy the ordered monotonicity property. 

While the ordered monotonicity property is quite general and captures a variety 
of interesting abstractions, it overconstrains the possible abstractions in some cases 
and underconstrains them in others. The property overconstrains the abstractions 
in the sense that there are useful abstractions that it does not capture. In general, 
the notion of preserving the structure of the abstract plan is important, but there 
are exceptions where a useful abstract plan may require violating the structure of the 
abstract plan in a constrained or localized fashion, where a condition is temporarily 
violated to achieve some other condition and then reachieved. 

The ordered monotonicity property also underconstrains the possible abstraction 
hierarchies in that an abstraction hierarchy is not necessarily useful if it has this 
property. Because an abstract space is a simplification of the original problem space 
there may exist plans in that abstract space that are not realizable, which means 
that there is no way to refine the abstract plan to a plan in the original problem 
space. If the ratio of unrealizable to realizable abstract plans is too large, the use of 
a particular abstract space could prove to be more expensive than no abstraction at 
all. The problem arises because the properties on which the abstractions are based 
do not take into account the difficulty of achieving the conditions that are ignored. 
They only consider whether the achievement of the conditions can be delayed without 
interfering with those parts of the problem that have already been solved. 

The properties described in the thesis provide only an initial approximation of 
what makes a good abstraction, although a formalizable and tractable approxima- 
tion. A more comprehensive theory would need to deal with the problems mentioned 
above. To address the problem of overconstraining the hierarchies, the theory could 
be weakened such that an abstraction hierarchy does not need to be strictly mono- 
tonic, but nearly monotonic, where those conditions that could be easily reachieved 
are allowed to be undone when necessary to achieve some other conditions. To address 
the problem of underconstraining the hierarchies, the theory would need to consider 
not only whether the ordered monotonicity property could be ensured, but also the 
difficulty of achieving those conditions that are ignored. This could be dealt with 
empirically by maintaining statistics on the costs and benefits of each abstraction 
and eliminating those abstractions whose cost outweigh their benefit. 

7.2    Generating Abstractions 

ALPINE generates abstraction hierarchies that have the ordered monotonicity prop- 
erty. The algorithm used in ALPINE guarantees that any abstraction it finds will have 
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this property, but it does not guarantee that all ordered monotonic abstractions will 
be found. If ALPINE cannot find an abstraction then the directed graph of literals will 
collapse into a single strongly connected component. There are two limitations of the 
current approach that can prevent ALPINE from generating an abstraction for a given 
problem space and problem. First, the representation of the operators may limit the 
granularity of the abstractions. Second, the algorithm may generate constraints that 

< are unnecessary to ensure the ordered monotonicity property. 

7.2.1    Representing the Abstraction Hierarchies 

The granularity of the abstraction hierarchies is determined by the language used to 
express the preconditions and effects of the operators. If an operator uses a literal 
with variables to express a precondition or effect, then ALPINE cannot place two 
instances of this literal at different levels in the hierarchy. The reason for this is that 
the algorithm determines the interactions between literals based on the preconditions 
and effects of the operators. 

Consider how different representations of the Tower of Hanoi problem impose 
different constraints on the abstraction language. The completely instantiated repre- 
sentation, shown in Table 2.2, does not impose any constraints on the abstraction lan- 
guage (although the potential interactions of the preconditions and effects of operators 
still impose some constraints) because the operators are defined by fully-instantiated 
literals. In contrast, the representation consisting of one operator for moving each 
disk, shown in Table 2.1 in Chapter 2, constrains the literals for each different size 
disk to be in the same abstraction level. For example, (on diskC pegl), (on diskC 
peg2), and (on diskC peg3) are forced into the same abstraction level regardless 
of the interactions between these literals. This is because the operators have precon- 
ditions and effects such as (on diskC peg), where peg is a variable, which prevents 
the system from distinguishing between different instances of the same literal. In 
this particular case, ALPINE would generate the same abstraction hierarchy for either 
representation. 

Another possible representation of the Tower of Hanoi consists of a single operator 
for moving any disk. This operator is shown in Table 7.1. In the other two represen- 
tations the conditions referring to different size disks were explicitly represented, so 
it was clear which disks would interact with which other disks. In this representation 
there is only the condition (on disk peg), so the potential interactions are not made 
explicit in the operator representation. Instead the interactions of the different condi-. 
tions are implicitly determined by the smaller relation. That is, •moving a particular 
disk will only interact with smaller disks, but this is determined when the operator is 
matched during planning. Thus, the algorithm for generating abstractions does not 
find any abstractions given this representation of the problem. 
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(Move_Disk 
(preconds 

(and  (is-peg source-peg) 
(is-peg dest-peg) 
(not  (equal source-peg dest-peg)) 
(on disk source-peg) 

(forall (smaller-disk) (smaller smaller-disk disk) 
(and (not (on smaller-disk source-peg)) 

(not (on smaller-disk dest-peg)))))) 
(effects ((del (on disk source-peg)) 

(add (on disk dest-peg))))) 

Table 7.1: Single Operator Version of the Tower of Hanoi 

One way to avoid this problem is to partially evaluate the operators in order to 
determine the precise interactions for any given literal in a domain. Thus, instead 
of grouping literals together based on the granularity of the literals in the operators, 
each operator is partially evaluated to determine both the potential effects and poten- 
tial preconditions when the operator is used to achieve various possible instantiated 
literals. To perform the partial evaluation the static conditions in the initial state 
are used to generate the bindings for the operator preconditions. For the single-disk 
Tower of Hanoi representation the smaller, equal, and is-peg relations would be 
used to partially evaluate the operator. 

For example, consider how partial evaluation could be used to determine the 
potential interactions when the operator is used to achieve the literal (on diskB 
peg3). Since this condition matches (on disk dest-peg) in the effects list, disk would 
be bound to diskB and dest-peg would be bound to peg3. Next, the static relations 
are used to determine the bindings for the other variables. The variable source-peg 
could be bound to pegl or peg2, and the variable smaller-disk could only be bound 
to diskA. Given the variable bindings it is then possible to determine the actual 
preconditions and effects when the operator is used to achieve a particular literal. 

Once the potential interactions are determined for each literal in the domain, the 
basic algorithm for generating abstractions can be used to construct the abstraction 
hierarchy. The difference is that instead of determining the constraints simply by 
examining the operators, the constraints are determined by partially evaluating the 
operators. 

This additional capability has been implemented in an extended version of ALPINE 
and it allows the system to produce finer-grained abstractions in many domains. For 
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example, m the process planning and scheduling domain, the system can produce 
abstraction spaces that distinguish between the various parts.    Thus, the literals 

le^V^YltTT\C&1)^nd (uShape b Cylindrical> «mid be placed at separate 
levels m the abstraction hierarchy. This allows the process planning for one part to 
be done separately from the process planning for another part because the different 
parts will not interact until they are placed in the schedule and,the scheduling is 
done last In the robot planning domain, partial evaluation allows ALPINE to place 
the literals involving different doors at separate abstraction levels. Thus, some doors 
can be treated as details while other doors are dealt with in more abstract spaces. 
Such a discrimination for instance, is useful if the status of only some of the doors are 
mentioned in the goal state. The partial evaluation also allows ALPINE to generate 
abstractions for the single-operator version of the Tower of Hanoi 

The difficulty with abstracting instances of literals is that the complexity of the 
algorithm is dependent on the number of literal classes and this extension significantly 
mcreases the number of literal classes. One way to reduce the number of literal classed 
is to expand only some of the argument types in a domain. For example, expanding 
only the parts in the scheduling domains would allow different parts to be placed on 
separae levels. Another approach to control the number of literals is to determine 

TW ^^T^ ^ US6d ^ "*** a — P»*» -d only reason 

7.2.2    Constraints on the Abstraction Hierarchy 

The most difficult problem of generating the abstraction hierarchies is finding a set 
of constraints that are sufficient to guarantee the ordered monotonicity problem 

idlttr, 7rCOn^ai\the Pfsible abstraction hierarchies. ALPINE attempts to 
rientify only those interactions that could actually occur in solving the given problem 

mara
esr; SmT-      TS !h\abf aCti°nS bY Statkally anaI^inS the W« it mu" make assumptions about which operators could be used and in what context. Thus 

the abstraction hierarchies are based on the possible interactions, which are a superset 
of the actual interactions  As a result it will in many cases overconstrain the hierarchy 
thus reducing the granularity of the possible abstraction hierarchies. * 

The   blocks world" [Nilsson, 1980] is a domain in which ALPINE is unable to 
generate abstractions   although there are-ordered monotonic abstractions for some 
problems  For example, given the problem of building a stack of blocks with A on B, B 
on C, and C on the table an ordered monotonic abstraction hierarchy would deal with 
the conditions on each block in the opposite order/For this example, the abstraction 
hierarchy would contain three levels, with C in the most abstract level, B and C on 
the next level, and all three blocks in the final level.  Thus, the problem would be 
solved by first getting the bottom block on the table, next stacking the block above 
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that one, finally placing the last block on the top of the stack This abstraction 
hierarchy has the ordered monotonicity property because as the plan is refined it will 
never be necessary to undo any of the conditions involving a block m a more abstract 
space. However, ALPINE cannot generate this abstraction because simply analyzing 
the possible interactions of the operators, it appears that every condition will interact 

with all other conditions. < 
In order to find more subtle abstractions, such as the one in the blocks world 

the system needs a deeper understanding of which conditions will actually interact 
with which other conditions in practice. One approach to solving this problem is to 
use explanation-based learning to acquire the necessary constraints by example. The 
system could begin with no constraints on the abstraction hierarchy and then learn a 
set of constraints through experience. The problem solver can easily detect a violation 
of the ordered monotonicity property, which occurs anytime an operator is applied 
at one level that changes a condition in a more abstract level. When a violation is 
detected the problem solver halts and invokes the EBL system to explain why the 
violation occurred.   From the proof of the violation the system constructs a rule 
that constrains some literal to be placed before some other literal in the abstraction 
hierarchy whenever the conditions arise under which the violation occurs. The rules 
learned by the EBL system would then be used to constrain the selection of the 
abstraction hierarchy for the given problem as well as future problems in the same 
domain. The resulting constraints on the abstraction hierarchy would be necessary, 
but not sufficient to guarantee the ordered monotonicity property. 

There are two potential difficulties with this approach. First, despite the gener- 
alization of the constraint rules, the number of rules that would need to be learned 
to cover a domain could be quite large. Thus, it could be expensive both to learn 
the rules and to apply the rules to select an abstraction hierarchy for a particular 
problem. Second, the number of levels in the resulting abstraction hierarchy could 
be large which would make it expensive to use the hierarchies for problem solving. 

7.3    Using Abstractions 
This thesis presented one approach to using abstractions for hierarchical problem 
solving While this particular approach produces significant reductions in search, it 
is by no means the only possible use of the abstractions. Since the abstractions are 
abstract versions of the original problem space, they are not specific to the partic- 
ular problem-solving method. The abstract problem spaces could be used for other 
approaches to hierarchical problem solving or exploited in other ways. For example 
operators and objects that are indistinguishable in an abstract space can be merged 
to simplify a problem space.  Also, the abstract problem spaces could be combined 
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with other learning methods. This section outlines how these abstractions could be 
used for other types of problem solving, describes how operators and objects can be 
combined, and sketches how the abstract problem spaces could be used for learning. 

7.3.1    Problem Solving 

ALPINE takes an initial problem space and forms abstract problem spaces that could 
then be used for.a variety of problem-solving techniques. This section describe how the 
abstractions generated by ALPINE could be used for both least-commitment problem 
solving and forward-chaining problem solving. 

Least-Commmitment Hierarchical Problem Solving 

The model of hierarchical problem solving described in Chapter 3 is based on a 
state-space problem solver. An alternative is to use a least-commitment approach to 
problem solving [Sacerdoti, 1977, Chapman, 1987], which searches through the space 
of plan refinements instead of searching through the state space. This approach 
is referred to as a least-commitment approach because ordering commitments are 
delayed as long as possible. 

The use of the abstraction hierarchies generated by ALPINE would be a simple 
extension to a least-commitment problem solver. First, a problem would be solved 
in the most abstract space to produce a partially ordered plan. The plan would then 
be refined in successive abstraction spaces by considering the conditions introduced 
at that level and adding the necessary plan steps and ordering constraints to produce 
a valid plan. The use of the abstractions provides additional information on which 
parts of the problem to solve first, but the basic problem-solving method remains 
unchanged. The ordered monotonicity property provides the same advantages in 
this approach as it does in the state-space approach. That is, the abstract solution 
produced at each level provides the outline for the final solution and would not be 
changed in the refinement process, thus constraining the search for a refinement at 
each level of abstraction. 

Forward-Chaining Problem Solving 

The problem solving method presented in this thesis assumed that the goals intro- 
duced at each abstraction level-will be achieved by chaining backward from the goal. 
However the same abstractions could also be used in a forward-chaining problem 
solver, such as soar [Laird et a/., 1987]. The only problem that arises with a forward- 
chaining system is that operators from more abstract levels might be applied at levels 
in which they should not be considered and potentially violate the ordered mono- 
tonicity property. However, this problem can be avoided simply by not allowing any 
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operator that occurs at a higher abstraction level to be inserted to achieve goals 
that arise in the refinement process. Because a backward-chaining problem solver 
is more goal directed and the ordered monotonicity property guarantees that the 
more abstract goals never arise at the lower levels, this problem never arises in a 
backward-chaining system. 

Consider an example from the Tower of Hanoi. Jn the abstract space a plan is 
constructed for moving the largest disk. At the next level this plan is refined to also 
achieve the conditions involving the medium-sized disk. Using a backward-chaining 
system, none of the operators for moving the large disk would even be considered 
since the ordered monotonicity property guarantees that goals involving the large 
disk will not arise at this level. However, with a forward-chaining system, an oper- 
ator for moving a large disk could be inserted simply because the preconditions are 
met. However, if the forward-chaining problem solver prevents any of the operators 
from the more abstract space from being applied, then the problem solver would only 
consider operators for moving the medium-sized disk. Thus, a forward-chaining sys- 
tem can use the abstraction spaces produced by ALPINE and still preserve the ordered 
monotonicity property. 

7.3.2    Operator and Object Hierarchies 

An advantage of forming reduced models of a problem space is that when details of a 
problem space are removed, it may be possible to combine operators and objects to 
form operator and object hierarchies. Each abstract operator or object represents an 
equivalence class whose members are distinguishable only at lower levels of abstrac- 
tion. Two operators may differ by some detail in the original problem space, but in 
an abstract space, the two may be indistinguishable. If so, they can then be combined 
into a single abstract operator that will be refined into a concrete operator at the level 
in which the two are distinguishable. Similarly, objects may become indistinguishable 
in an abstract space, and they can be combined into an abstract object that can then 
be treated as a resource. The use of both operator and object hierarchies can reduce 
the branching factor in the abstract space since there will be fewer operators and/or 
fewer instantiations of operators to consider during problem solving. 

Consider an example in the scheduling domain, where there are two machines that 
can be used to make a part cylindrical, the lathe and the milling machine. While 
these operators differ in some of their preconditions and effects, if these differences 
are ignored in an abstract space, then the commitment to a particular machine can 
be delayed. In the abstract problem space the two operators would be replaced by 
a single abstract operator. Thus a plan produced in the abstract space would only 
contain this abstract operator. When this plan is refined into a level where the lathe 
and mill operators differ, the abstract operator would then be replaced by one of the 
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more specific operators. At that time there may be additional knowledge to select 
one machine over the other (for instance, the milling machine may already be in use). 

This abstract operator could be used in the example described in Section 2.3. 
In that example, the problem was to make a part cylindrical and polished. The 
abstraction hierarchy formed for this problem deals with the cylindrical goal first 
and then the polished goal. If the mill and lathe operators are not combined into a 
single abstract operator, the problem solver will be forced to arbitrarily select one 
of the specific operators in the abstract space and it may select one that cannot be 
refined. In this particular example if the mill operator is used the problem solver 
will find that the plan cannot be refined because the part will be too hot to polish 
and it will eventually be forced to backtrack to the abstract space and select the 
lathe operator. With a single abstract operator for making a part cylindrical, the 
system would create the abstract plan to make the part cylindrical, then when the 
plan is refined the abstract operation would be refined into either the lathe or mill 
operation. By delaying the commitment to the more specific operator, the choice 
point will be moved closer to the potential interaction, which will reduce or eliminate 
the backtracking. (This is the same idea used in least-commitment problem solver, 
where ordering commitments are delayed as long as possible.) 

Object hierarchies can be used in an analogous way. If two or more objects are 
indistinguishable in an abstract space, they can be treated as a resource. Thus, 
instead of committing to a specific object, the abstract plan can simply refer to 
the resource. Then when the plan is refined to the level in which the objects are 
distinguishable, the resource would be replaced by one of the particular objects. The 
advantages of object hierarchies are similar to operator hierarchies in that they delay 
committing to a particular choice as long as possible and can thus help reduce or 
avoid backtracking. 

The hierarchical version of PRODIGY could easily be extended to handle operator 
hierarchies. This would simply involve combining two or more operators that are 
indistinguishable in an abstract space into a single abstract operator and then replac- 
ing the abstract operator with a concrete one as the abstract plan is refined. The 
use of object hierarchies is a bit more complex because objects are often a limited 
resource. To exploit object hierarchies requires the capability of reasoning about re- 
sources. Such a capability is provided in SIPE, as described in [Wilkins, 1988], but is 
not yet available in PRODIGY. 

7.3.3    Using Abstract Problem Spaces for Learning 
Since the abstractions of a problem space are abstract problem spaces, the abstrac- 
tions can be used for learning as well as problem solving. This section sketches ap- 
proaches to combining the abstractions generated by ALPINE with both explanation- 
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based learning and learning by analogy.1 

Explanation-Based Learning 

Explanation-based learning is used in PRODIGY to learn control knowledge to guide 
the search [Minton, 1988a]. The control knowledge learned by EBL in PRODIGY pro- 
vides significant reductions in search. However, a difficulty with this approaches that 
the examples from which the system learns often contain an abundance of unneces- 
sary details. In order to learn control rules, the EBL system constructs proofs about 
the success, failure, or interactions in a problem-solving example. Problems with lots 
of details make this process more complex because the proofs are considerably more 
complex. As a result of the details in the proofs, the EBL system may also learn 
control rules that are overly specific. Because the rules are more specific, it requires 
more rules to learn a sufficient set of control knowledge to solve problems efficiently in 
a given domain. The more rules in the system, the more time it will spend matching 
the rules, reducing the overall benefit of the control knowledge. 

One possible approach to combining explanation-based learning and abstraction is 
to apply the control rule learning within each abstraction space. This would simplify 
the learning process and result in more general control rules since the proofs in an 
abstract space would contain fewer details. The fewer, more general rules would be 
cheaper to match and thus provide better performance. 

To illustrate the synergistic effect of ALPINE and EBL, consider their integration 
in the Tower of Hanoi domain. As described in Section 5.1, the use of abstraction in 
the Tower of Hanoi provides a significant reduction in search, but using a depth-first 
search it still produces suboptimal solutions and requires some search. EBL can be 
applied to the Tower of Hanoi to learn control rules to reduce search. For the two-disk 
problem, the EBL system produces a set of control rules such that the system makes 
the correct decision at each choice point and produces the optimal solution. However, 
because the proofs become more complex as the problems get larger, the system does 
not produce a complete set of rules for anything larger than the two-disk problem. 

Combining abstraction and EBL in the Tower of Hanoi reduces the problem to one 
that can be solved without search (i.e., the correct decision is made at every choice 
point). The abstraction simplifies the problem such that the only search involves 
moving a disk out of the way of another disk that needs to be moved. If a disk needs 
to be moved in order to move another disk, there are only two places to move the disk, 
one of which is the' "right" place and the other will interfere with the placement of 
another disk. EBL is particularly good at recognizing this type of interaction, called a 

1ALPINE could also be combined with STATIC [Etzioni, 1990], which performs static analysis of 
a problem space to produce control knowledge. The integration of ALPINE and STATIC would be 
analogous to combining ALPINE with EBL. 
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prerequisite violation, and learning control rules to avoid them. Thus, the EBL system 
can learn a set of rules that allow the problem solving to make the correct choices at 
each level in the hierarchy. 

An example rule that was learned by the EBL system in an abstract problem space 
is shown in Table 7.2. This rule states that if the goal is to get diskA out of the way 
of moving diskB, the problem solver should move diskA someplace other than the 
place where it is planning-to move diskB. »Otherwise,-diskA will immediately need 
to be moved again. While this rule is more specific than necessary and will require 
learning a set of these rules to cover all the cases, the EBL system can learn more 
general rules if the operators are parameterized. 

(if  (and (current-node node) 
(current-goal node (noton diskA pegl)) 
(candidate-op node move-disk-A-peg-1-2) 
(alt-on-deck node (on diskB peg2) move-disk-B-peg-1-2) 
(candidate-op node op) 
(not-equal move-disk-A-peg-1-2 op))) 

(then (prefer operator op move-disk-A-peg-1-2)) 

Table 7.2: Control Rule Learned by EBL in an Abstract Space 

The combination of the two techniques produces performance improvements that 
neither system can achieve independently [Knoblock et a/., 1991a]. In the Tower of 
Hanoi the abstraction module can reduce the search from exponential-to-linear in the 
solution length, but it cannot completely eliminate the search within each abstraction 
level. The EBL module can learn rules for the simple Tower of Hanoi problems, but 
it is unable to learn a set of rules that completely solves problems with more than 
two disks. However, the combination of the two approaches can both eliminate any 
search from the problem and produce the optimal solution. 

Learning by Analogy 

Analogy can also used to guide problem solving in PRODIGY [Veloso and Carbonell, 
1990]. The analogy engine stores problem solving episodes in a case library and then 
retrieves them to guide the search in similar problems. There are several difficulties 
that arise in the use of analogy in problem solving. First, the analogy engine can get 
mired down in indexing and selecting the relevant stored plans. Second, the number 
of stored plans can become quite large, incurring significant storage and retrieval 
costs. 
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Similar to combining abstraction and EBL, abstraction and analogy can be in- 
tegrated by applying analogy in the abstract problem spaces. This integration will 
simplify the indexing of new problems to previously solved problems since the ab- 
straction spaces will separate the important aspects from the details. Since analogy 
is employed in simpler abstract problem spaces, it will store a smaller set of more 
general past solutions and will thus reduce the storage and retrieval costs. 

Consider the integration of abstraction and analogy in the Tower of Hanoi. As , 
described previously, the use of abstraction partitions the problem such that each 
abstraction space requires inserting the steps to move a particular disk. Analogy 
would be used to store the plans for moving the disks at each level in the abstraction 
hierarchy. Then, instead of searching for a solution to a subproblem, the analogy 
system would retrieve a similar previously solved problem and use that to guide the 
search. The integration simplifies the indexing and retrieval since the cases will be 
partitioned by the abstraction levels. Thus, the number of possible plans will be much 
smaller and it will be easier to find one that is relevant to a given problem. 

7.4    Discussion 

The construction of abstract problem spaces is a type of reformulation, where the orig- 
inal problem space is replaced by a more abstract one. The work presented in this 
thesis takes the first steps towards automatically reformulating problems for problem 
solving. The role of reformulation has long been recognized as central to problem 
solving [Amarel, 1968, Korf, 1980, Hobbs, 1985, Subramanian and Genesereth, 1987, 
Subramanian, 1989], but much of this work has focused on identifying and represent- 
ing the reformulations. As described in Section 6.2, more recently has work begun to 
address the problem of how to automate these processes. 

The key to solving a problem is understanding the problem. Some problem solvers 
forge ahead blindly hoping to stumble across a solution by focusing on one part of the 
problem and when that has been achieved focusing on another part. Other problem 
solvers interleave the work on the various parts of a problem but spend an excessive 
amount of time delaying commitments and verifying constraints. A better approach 
is to step back and understand a problem. What are the hard parts? What are the 
details? How can the problem be decomposed? This thesis presented an approach to 
do exactly that. It takes a problem and based on the problem reformulates the initial 
•problem space into a hierarchy of abstract problem spaces that can then be used.to 
solve the problem. This allows the problem solver to focus on the difficult parts first, 
decomposing the problem into simpler subproblems and gradually reintroducing the 
details that were ignored. 

In general, reformulating problems and solving them "intelligently" requires much 
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more knowledge than is usually provided to problem solvers. When people attack a 
problem they bring a vast amount of knowledge to bear on the problem. When com- 
puters solve problems they are limited by inflexible methods and very shallow theories 
of the problem solving domains. Consider the mutilated checkerboard problem [Mc- 
Carthy, 1964], where the problem is to cover a mutilated checkerboard, which has 
two opposite corners removed, with a set of dominoes (each covering two squares) 
or prove that the problem is impossible. In turns out 1;hat the problem is impossi- 
ble since there will be two fewer squares of one color than the other color and each 
domino can only cover one black and one white square. To solve this problem does 
not require search in either the state space or the plan space, but search through the 
space of possible problem spaces [Kaplan and Simon, 1990]. It requires changing the 
problem space from one in which all possible arrangements of the dominoes on the 
board are considered to one that uses the parity of the squares on the board to show 
that it would be futile to even begin to arrange the dominoes. 

While the particular reformulation of the mutilated checkerboard problem may 
not have very general applicability, it does illustrate the approach needed to solve 
more difficult problems. That is, a problem solver should be able to take a problem 
represented at some level of detail and reformulate it into a problem that captures 
the "essence" of the problem. An important step in this process is determining 
which conditions to focus on and which conditions to ignore. However, to build an 
intelligent problem solver will require more than the ability to ignore some of the 
details. It will also require the ability to reformulate a problem into a completely 
different representation of a problem. This thesis has achieved that first step of 
focusing problem-solving attention on the most relevant and difficult aspects first, and 
then progressively reintroducing more peripheral information to construct a complete 
solution to a problem. 
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Appendix A 

Tower of Hanoi 

This section includes the PRODIGY code for the Tower of Hanoi and provides the 
experimental results described in Chapter 5. The three representations of the Tower 
of Hanoi that are described in the thesis are presented in this section. An example 
problem is included for each of the three problem-space representations. 

A.l     Single-Operator Representation 
(MOVE-DISK 

(params (<disk> <peg.from> <peg.to>)) 
(preconds 

(and (is-peg <peg.from>) 
(is-peg <peg.to>) 
(not-equal <peg.from> <peg.to>) 
(on <disk> <peg.from>) 
(forall (<disk.sm>)(smaller <disk.sm> <disk>) 

(and (" (on <disk.sm> <peg.from>)) 
(" (on <disk.sm> <peg.to>)))))) 

(effects ((del (on <disk> <peg.from>)) 
(add (on <disk> <peg.to>))))) 

Goal: '(and (on diskA peg3)(on diskB peg3)(on diskC peg3)) 

Initial State: '((on diskA pegl)(on diskB pegl)(on diskC pegl) 
(smaller diskA diskB) 
(smaller diskA diskC) 
(smaller diskB diskC) 
(is-peg pegl)(is-peg peg2)(is-peg peg3) 
(is-disk diskC)(is-disk diskB)(is-disk diskA))) 

137 
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A.2    Instantiated-Disk Representation 
(MOVE-DISK-A 

(params (<peg.from> <peg.to>)) 
(preconds 

(and (on diskA <peg.from>) 

(is-peg <peg.to>) 

(not-equal <peg.from> <peg.to>))) 
(effects ((del (on diskA <peg.from>)) 

(add (on diskA <peg.to>))))) 

(MOVE-DISK-B 

(params (<peg.from> <peg.to>)) 

(preconds 

(and (on diskB <peg.from>) 

(is-peg <peg.to>) 

(not-equal <peg.from> <peg.to>) 
(" (on diskA <peg.from>)) 

(" (on diskA <peg.to>)))) 
(effects ((del (on diskB <peg.from>)) 

(add (on diskB <peg.to>))))) 

(MOVE-DISK-C 
(params (<peg.from> <peg.to>)) 
(preconds 

(and (on diskC <peg.from>) 

(is-peg <peg.to>) 

(not-equal <peg.from> <peg.to>) 

(" (on diskB <peg.from>)) 
(" (on diskA <peg.from>)) 
(" (on diskB <peg.to>)) 
(" (on diskA <peg.to>)))) 

(effects ((del (on diskC <peg.from>)) 
(add (on diskC <peg.to>))))) 

Goal: »(and (on diskA peg3)(on diskB peg3)(on diskC peg3)) 

Initial State: '((on diskC pegl)(on diskB pegl)(on diskA pegl) 

(is-peg pegl)(is-peg peg2)(is-peg peg3)) 

A.3    Pully-Instantiated Representation 
(MOVE-DISK-A-PEG-i-2 

(preconds (on diskA pegl)) 

(effects ((del (on diskA pegl)) 
(add (on diskA peg2))))) 
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(MOVE-DISK-A-PEG-2-l 
(preconds (on diskA peg2)) 

(effects ((del (on diskA peg2)) 

(add (on diskA pegl))))) 

(MOVE-DISK-A-PEG-1-3 
(preconds (on diskA pegl)) 

(effects ((del (on diskA pegl)) 

(add (on diskA peg3))))) 

(MOVE-DISK-A-PEG-3-1 
(preconds (on diskA peg3)) 

(effects ((del (on diskA peg3)) 

(add (on diskA pegl))))) 

(MOVE-DISK-A-PEG-2-3 
(preconds (on diskA peg2)) 
(effects ((del (on diskA peg2)) 

(add (on diskA peg3))))) 

(MOVE-DISK-A-PEG-3-2 
(preconds (on diskA peg3)) 
(effects ((del (on diskA peg3)) 

(add (on diskA peg2))))) 

(MOVE-DISK-B-PEG-1-2 
(preconds 

(and (on diskB pegl) 
(~ (on diskA pegl)) 
(" (on diskA peg2)))) 

(effects ((del (on diskB pegl)) 
(add (on diskB peg2))))) 

(MOVE-DISK-B-PEG-2-1 
(preconds 

(and (on diskB peg2) 
(" (on diskA peg2)) 
(" (on diskA pegl)))) 

(effects ((del (on diskB peg2)) 
(add (on diskB pegl))))) 

(MOVE-DISK-B-PEG-1-3 
(preconds 

(and (on diskB pegl) 

(' (on diskA pegl)) 

(" (on diskA peg3)))) 

(effects ((del (on diskB pegl)) 
(add (on diskB peg3))))) 

(MOVE-DISK-B-PEG-3-1 

(preconds 

(and (on diskB peg3) 

(" (on diskA peg3)) 

(" (on diskA pegl)))) 
(effects ((del (on diskB peg3)) 

(add (on diskB pegl))))) 

(HOVE-DISK-B-PEG-2-3 
(preconds 

(and (on diskB peg2) 

(" (on diskA peg2)) 

(" (on diskA peg3)))) 

(effects ((del (on diskB peg2)) 
(add (on diskB peg3))))) 

(MOVE-DISK-B-PEG-3-2 
(preconds 

(and (on diskB peg3) 

(" (on diskA peg3)) 
(" (on diskA peg2)))) 

(effects ((del (on diskB peg3)) 
(add (on diskB peg2))))) 

(MOVE-DISK-C-PEG- 
(preconds 

(and 

1-2 

(on diskC pegl) 
(on diskB pegl)) 
(on diskA pegl)) 
(on diskB peg2)) 
(on diskA peg2)))) 

(effects ((del (on diskC pegl)) 
(add (on diskC peg2))))) 

(MOVE-DISK-C-PEG-2-i 
(preconds 

(and (on diskC peg2) 
(on diskB peg2)) 
(on diskA peg2)) 
(on diskB pegl)) 
(on diskA pegl)))) 

(effects ((del (on diskC peg2)) 
(add (on diskC pegl))))) 



140 APPENDIX A.  TOWER OF HANOI 

(MOVE-DISK-C-PEG-l-3 
(preconds 

(and (on diskC pegl) 

(~ (on diskB pegl)) 
(" (on diskA pegl)) 

(" (on diskB peg3)) 

(" (on diskA peg3)))) 
(effects ((del (on diskC pegl)) 

(add (on diskC peg3))))) 

(HDVE-DISK-C-PEG-3-1 

(preconds 

(and (on diskC peg3) 

(on diskB peg3)) 
(on diskA peg3)) 

(on diskB pegl)) 

(on diskA pegl)))) 
(effects ((del (on diskC peg3)) 

(add (on diskC pegl))))) 

(MOVE-DISK-C-PEG-2-3 
(preconds 

(and (on diskC peg2) 

(on diskB peg2)) 
(on diskA peg2)) 
(on diskB peg3)) 
(on diskA peg3)))) 

(effects ((del (on diskC peg2)) 
(add (on diskC peg3))))) 

(MOVE-DISK-C-PEG-3-2 
(preconds 

(and (on diskC peg3) 

(" (on diskB peg3)) 

(" (on diskA peg3)) 

(" (on diskB peg2)) 
(" (on diskA peg2)))) 

(effects ((del (on diskC peg3)) 

(add (on diskC peg2))))) 

Goal: (and (on diskA peg3) 
(on diskB peg3) 

(on diskC peg3)) 

Initial State: ((on diskC pegl) 
(on diskB pegl) 

(on diskA pegl)) 
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A.4    Experimental Results 

The Tower of Hanoi experiments were run in Allegro Common Lisp on a SparcSta- 
tion 1+ with 12 megabytes of memory. These experiments used the single-operator 
representation of the Tower of Hanoi, but since the problem spaces are equivalent, 
the numbers would be roughly the same for any of the representations. 

The tables below compare PRODIGY both with and without using the abstractions 
produced by ALPINE. The entries in the table are defined as follows: 

Disks The number of disks in the problem. 

Time Total CPU time used in solving the problem. A 600 CPU second time bound 
was imposed on all problems. 

Nodes Total number of nodes searched in solving the problem. 

Len Length of the solution found. Zero if no solution exists. 

ACT Time required to create the abstraction hierarchy. This time is also included 
in the total CPU time for ALPINE. 

AbNodes Nodes searched at each level in the hierarchy. Ordered from more abstract 
to less abstract levels. 

AbLen Solution length found at each level in the hierarchy.   Ordered from more 
abstract to less abstract levels. 

Depth-First Iterative-Deepening Search 

Prodigy                                               Prodigy + Alpine 
Disks Time Nodes Len Time Nodes Len ACT                    AbNodes                AbLen 

1 
2 
3 
4 
5 
6 
7 

0.1          4      1 
1.8      122      3 

47.0    2790      7 
600.0       —    — 
600.0       —    — 
600.0       —    — 
600.0       —    — 

0.2         4      1     0.1                               4                        1 
0.5        12      3     0.2                            4,8                     1,2 
0.8        24      7     0.3                        4,8,12                  1,2,4 
2.1        52    15     0.5                   4,8,12,28                1,2,4,8 
3.8        96    31     0.8              4,8,12,28,44           1,2,4,8,16 
8.4      204    63     1.3        4,8,12,28,44,108      1,2,4,8,16,32 

16.4      376 127     1.6 4,8,12,28,44,108,172 1,2,4,8,16,32,64 
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Depth-First Search 

Prodigy Prodigy + Alpine 
Disks Time Nodes   Len Time Nodes   Len ACT                      AbNodes                     AbLen 

1 
2 
3 
4 
5 
6 
7 

0.0        4        1 
0.4      15       6 
1.1 49     21 
4.2 147     64 

13.0    424   185 
51.3   1202   524 

233.1   3395 1477 

0.1 
0.5 
1.1 
3.5 

10.2 
36.1 

168.2 

4       1 
12       4 
34     13 
96     40 

280    121 
828   364 

2470 1093 

0.1                                     4                               1 
0.2                                4,8                           1,3 
0.3                           4,8,22                        1,3,9 
0.5                       4,8,22,62                   1,3,9,27 
0.8                4,8,22,62,184               1,3,9,27,81 
1.3          4,8,22,62,184,548        1,3,9,27,81,243 
1.6 4,8,22,62,184,548,1642 1,3,9,27,81,243,729 

Depth-First Search on a Variant of the Tower of Hanoi 

Prodigy Prodigy + Alpine 
Disks Time Nodes Len Time Nodes Len ACT                    AbNodes                AbLen 

1 0.1          4      1 0.3 4      1 0.1                                 4                          1 
2 1.4        41      3 0.4 12      3 0.2                              4,8                       1,2 
3 1.6        52      7 1.1 24      7 0.3                        4,8,12                   1,2,4 
4 3.6      116    19 2.7 52    15 0.5                   4,8,12,28                1,2,4,8 
5 9.1      254    51 5.2 96    31 0.8              4,8,12,28,44           1,2,4,8,16 
6 27.5      695  131 10.7 204    63 1.3        4,8,12,28,44,108      1,2,4,8,16,32 
7 92.4    1935 323 22.0 376 127 1.6 4,8,12,28,44,108,172 1,2,4,8,16,32,64 

This variant of the Tower of Hanoi disallows moving the same disk twice in a row. 
This is implemented using the following PRODIGY control rule: 

(D0-N0T-M0VE-TWICE 
(lhs  (and (current-node <node>) 

(current-op <node> MOVE-DISK) 
(candidate-bindings <node> (<disk> <pegl> <peg2>)) 
(last-disk-moved <node> <last-disk>) 
(is-equal <last-disk> <disk>))) 

(rhs  (reject bindings (<disk> <pegl> <peg2>)))) 
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Extended STRIPS Domain 

The robot planning domain described in this section is equivalent to the domain 
described by Minton [1988a], but there are three minor syntactic changes that were 
made to improve the abstractions produced by ALPINE. These changes are as follows: 

• The original domain treated both boxes and keys simply as objects and made 
no explicit distinction between them. This domain uses a type hierarchy to 
distinguish between them, but since the operator language is restricted to refer 
to conditions on the leaves of the type hierarchy (Section 4.4.1), each operator 
for manipulating objects is divided into two operators, one for boxes and one 
for keys. 

• The original domain used the static conditions dr-to-room and connects to 
express the relationships between the rooms and doors. The revised version 
simply uses connects uniformly. This is done to simplify the analysis of the 
relationships between variables in different operators. 

• There were also some subtle precondition ordering problems that prevented the 
problem solver from finding solutions to some problems that have solutions. To 
avoid these problems, preconditions that require holding an object were moved 
after the preconditions that require getting the same object into a particular 
room, and preconditions that require arm-empty were moved after door-open 
preconditions. 

B.l    Problem Space Definition 

143 
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(PICKUP-BOX 

(params (<box.ol>)) 
(preconds 

(and (arm-empty) 
(next-to robot <box.oi>) 

(carriable <box.ol>))) 
(effects 

((del (arm-empty)) 

(del (next-to <box.ol> <box.*30>)) 
(del (next-to <box.ol> <door.*30>)) 

(del (next-to <box.*31> <box.ol>)) 

(del (next-to robot <box.ol>)) 

(add (holding <box.ol>))))) 

(PICKUP-KEY 

(params (<key.ol>)) 
(preconds 

(and (arm-empty) 
(next-to robot <key.ol>) 
(carriable <key.ol>))) 

(effects 

((del (arm-empty)) 
(del (next-to robot <key.ol>)) 

(add (holding <key.ol>))))) 

(PUTDOWN-BOX 

(params (<box.o2>)) 
(preconds 

(and (holding <box.o2>) 
(is-box <box.o2>))) 

(effects 
((del (holding <box.*35>)) 
(add (next-to robot <box.o2>)) 
(add (arm-empty))))) 

(PUTDOWN-KEY 
(params (<key.o2>)) 
(preconds 

(and (holding <key.o2>) 

(is-key <door.o2> <key.o2>))) 

(effects 
((del (holding <key.*35>)) 
(add (next-to robot <key.o2>)) 

(add (arm-empty))))) 

(PUTDOWN-BOX-NEXT-TO 
(params (<box.o3> <box.other> 

<room.o3-rm>)) 

(preconds 

(and 

(is-object <box.other>) 

(inroom <box.other> <room.o3-rm>) 
(inroom <box.o3> <room.o3-rm>) 

(holding <box.o3>) 

(next-to robot <box.other>))) 
(effects 

((del (holding <box.o3>)) 
(add (next-to <box.o3> <box.other>)) 

(add (next-to robot <box.o3>)) 

(add (next-to <box.other> <box.o3>)) 

(add (arm-empty))))) 

(PUSH-BOX-TO-DR 

(params (<box.bl> <door.dl> <room.rl>)) 
(preconds 

(and 

(is-door <door.dl>) 
(connects <door.dl> <room.r2> 

<room.rl>) 
(inroom <box.bl> <room.rl>) 

(next-to robot <box.bi>) 

(pushable <box.bl>))) 
(effects 

((del (next-to <box.bl> <box.*5>)) 
(del (next-to <box.bl> <door.*5>)) 
(del (next-to <box.*13> <box.bl>)) 
(del (next-to robot <box.*3>)) 
(add (next-to robot <box.bl>)) 
(add (next-to <box.bl> <door.dl>)) 

))) 

(PUSH-BOX-THRU-DR 
(params (<box.b-x> <door.d-x> 

<room.r-x> <room.r-y>)) 
(preconds 

(and 

(is-room <room.r-x>) 

(connects <door.d-x> <room.r-x> 

<room.r-y>) 
(is-door <door.d-x>) 
(dr-open <door.d-x>) 

(next-to <box.b-x> <door.d-x>) 
(next-to robot <box.b-x>) 

(pushable <box.b-x>) 

(inroom <box.b-x> <room.r-y>))) 
(effects 
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((del (next-to robot <box.*l>)) 
(del (next-to <box.b-x> <box.*12>)) 
(del (next-to <box.b-x> <door.*12>)) 
(del (next-to <box.*7> <box.b-x>)) 
(del (inroom robot <room.*21>)) 

(del (inroom <box.b-x> <room.*22>)) 

(add (inroom robot <room.r-x>)) 

(add (inroom <box.b-x> <room.r-x>)) 

(add (next-to robot <box.b-x>))))) 

(GO-THRU-DR 

(params (<door.ddx> <room.rrx> 
<room.rry>)) 

(preconds 
(and 

(is-room <room.rrx>) 
(connects <door.ddx> <room.rrx> 

<room.rry>) 
(is-door <door.ddx>) 
(dr-open <door.ddx>) 
(arm-empty) 

(next-to robot <door.ddx>) 
(inroom robot <room.rry>))) 

(effects 

((del (next-to robot <door.*19>)) 
(del (inroom robot <room.*20>)) 
(add (inroom robot <room.rrx>))))) 

(CARRY-BOX-THRU-DR 
(params (<box.b-zz> <door.d-zz> 

<room.r-zz> <room.r-ww>)) 
(preconds 

(and 

(is-room <room.r-zz>) 
(connects <door.d-zz> <room.r-zz> 

<room.r-HH>) 
(is-door <door.d-zz>) 
(dr-open <door.d-zz>) 

(is-object <box.b-zz>) 

(inroom <box.b-zz> <room.r-ww>) 
(carriable <box.b-zz>) 
(holding <box.b-zz>) 
(inroom robot <room.r-ww>) 

(next-to robot <door.d-zz>))) 
(effects 

((del (next-to robot <door.*48>)) 

(del (inroom robot <room.*41>)) 
(del (inroom <box.b-zz> <room.*42>)) 

(add (inroom robot <room.r-zz>)) 
(add (inroom <box.b-zz> <room.r-zz>) 

)))) 

(CARRY-KEY-THRU-DR 

(params (<key.b-zz> <door.d-zz> 

<room.r-zz> <room.r-ww>)) 

(preconds 

(and 

(is-room <room.r-zz>) 
(connects <door.d-zz> <room.r-zz> 

<room.r-ww>) 

(is-door <door.d-zz>) 
(dr-open <door.d-zz>) 
(is-object <key.b-zz>) 
(inroom <key.b-zz> <room.r-ww>) 

(carriable <key.b-zz>) 

(holding <key.b-zz>) 
(inroom robot <room.r-ww>) 
(next-to robot <door.d-zz>))) 

(effects 

((del (next-to robot <door.*48>)) 

(del (inroom robot <room.*41>)) 
(del (inroom <key.b-zz> <room.*42>)) 
(add (inroom robot <room.r-zz>)) 
(add (inroom <key.b-zz> <room.r-zz>) 

)))) 

(GOTO-DR 
(params (<door.dx> <room.rx>)) 
(preconds 

(and 

(is-door <door.dx>) 
(connects <door.dx> <room.ry> 

<room.rx>) 
(inroom robot <room.rx>))) 

(effects 

((del (next-to robot <box.*18>)) 
(del (next-to robot <door.*18>)) 

(del (next-to robot <key.*18>)) 
(add (next-to robot <door.dx>))))) 

(PUSH-BOX 

(params (<box.ba> <box.bb> <room.ra>)) 
(preconds 

(and 

(is-object <box.ba>) 

(is-object <box.bb>) 
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(inroom <box.bb> <room.ra>) (CLOSE 

(inroom <box.ba> <room.ra>) (params (<door.doorl>)) 

(pushable <box.ba>) (preconds 

(next-to robot <box.ba>))) (and 

(effects (is-door <door.doori>) 

((del (next-to robot <box.*14>)) (next-to robot <door.doorl>) 

(del (next-to <box.ba> <door.*B>)) (dr-open <door.doorl>))) 

(del (next-to <box.ba> <box.*5>)) (effects * 

(del (next-to <box.*6> <box.ba>)) ((del (dr-open <door.doorl>)) 
(add (next-to robot <box.ba>)) (add (dr-closed <door.doorl>))))) 

(add (next-to robot <box.bb>)) . 
(add (next-to <box.ba> <box.bb>)) (LOCK 

(add (next-to <box.bb> <box.ba>))))) (params (<door.door2> <key.kl> 

<room.rm-b>)) 
(GOTO-BOX (preconds 

(params (<box.b> <room.rm>)) (and 
(preconds (is-door <door.door2>) 

(and (is-object <box.b>) (is-key <door.door2> <key.kl>) 
(inroom <box.b> <room.rm>) (connects <door.door2> <room.rm-c> 
(inroom robot <room.rm>))) <room.rm-b>) 

(effects (inroom <key.kl> <room.rm-b>) 
((add (next-to robot <box.b>)) (holding <key.kl>) 
(del (next-to robot <box.*109>)) (next-to robot <door.door2>) 
(del (next-to robot <door.*109>)) (dr-closed <door.door2>) 
(del (next-to robot <key.*109>))))) (unlocked <door.door2>))) 

(effects 
(GOTO-KEY ((del (unlocked <door.door2>)) 
(params (<key.b> <room.rm>)) (add (locked <door.door2>))))) 
(preconds 

(and (is-object <key.b>) (UNLOCK 
(inroom <key.b> <room.rm>) (params (<door.door3> <key.k2> 
(inroom robot <room.rm>))) <room.rm-a>)) 

(effects (preconds 
((add (next-to robot <key.b>)) (and 
(del (next-to robot <box.*109>)) (is-door <door.door3>) 
(del (next-to robot <door.*109>)) (is-key <door.door3> <key.k2>) 
(del (next-to robot <key.*109>))))) (connects <door.door3> <room.rm-d> 

<room.rm-a>) 
(OPEN (inroom <key.k2> <room.rm-a>) 

(params (<door>)) (holding <key.k2>) 
(preconds (inroom robot <room.rm-a>) 

(and (is-door <door>) (next-to robot <door.door3>) 

(unlocked <door>) (locked <door.door3>))) 

(next-to robot <door>) (effects 

(dr-closed <door>))) ((del (locked <door.door3>)) 

(effects (add (unlocked <door.door3>))))) • 
((del (dr-closed <door>)) 
(add (dr-open <door>))))) 
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(setq «AXIOMS* 

'(((next-to <box.l-axioml> <box.2-axioml>) . 

((inroom <box.l-axioml> <room.axioml>) 

(inroom <box.2-axioml> <room.axioml>))) 
((next-to robot <box.axiom2>) 

((next-to robot <key.axiom3>) 

((inroom <box.axiom2> <room.axiom2>) 

(inroom robot <room.axiom2>))) 
((inroom <key.axiom3> <room.axiom3>) 
(inroom robot <room.axiom3>))) 

((next-to robot <door.axiom4>) . 
((connects <door.axiom4> <room.x4> <room.y4>) 

(inroom robot <room.y4>))) 
((dr-open <door.axiom5>) . ((unlocked <door.axiom5>))) 

((locked <door.axiom6>) . ((dr-closed <door.axiom6>))) 
((" (dr-open <door.axiom9>)) . ((dr-closed <door.axiom9>))) 
((" (dr-closed <door.axiomlO>)) . ((dr-open <door.axiomlO>) 

(unlocked <door.axiomlO>))) 
(locked <door.axiomll>)) . ((unlocked <door.axiomli>))) 
(unlocked <door.axioml2>)) . ((locked <door.axioml2>) 

(dr-closed <door.axioml2>))) 
(arm-empty)) . ((holding <box.ol3>)(holding <key.ol3>))) 

((" (holding <box.axioml4>)) . ((arm-empty))) 
((" (holding <key.axioml5>)) . ((arm-empty))))) 

(( 
(( 

(( 

(setq *VARIABLE-TYPIHG* '( 

(isa 'object 'type)(isa 'box 'object)(isa 'key 'object) 
(isa 'door 'object)(isa 'robot 'type)(isa 'room 'type) 

" "robot 'robot)(isa-instance 'boxl 'box) 
box2 'box)(isa-instance 'box3 'box) 
rooml 'room)(isa-instance 'room2 'room) 
room3 'room)(isa-instance 'room4 'room) 
room5 'room)(isa-instance 'room6 'room) 
room7 'room)(isa-instance *doorl2 'door) 

door23 'door)(isa-instance 'door34 'door) 

door25 'door)(isa-instance 'door56 'door) 

door26 'door)(isa-instance 'door36 'door) 
door67 'door)(isa-instance 'keyl2 'key) 
key23 'key)(isa-instance 'key34 'key) 
key25 'key)(isa-instance 'key56 'key) 
key26 'key)(isa-instance 'key36 'key) 
key67 'key)(isa-instance 'rml 'room) 
rm2 'room)(isa-instance 'drl2 'door) 
keyl2 'key)(isa-instance *rm3 'room) 

rm4 'room)(isa-instance 'dr23 'door) 

dr34 'door)(isa-instance 'key23 'key) 

key34 'key)(isa-instance 'A 'box) 
B 'box)(isa-instance 'C 'box) 

D 'box)(isa-instance 'E 'box) 
F 'box)(isa-instance 'G 'box)) 

(isa-instance 
(isa-instance 
(isa-instance 

(isa-instance 
(isa-instance 

(isa-instance 
(isa-instance 

(isa-instance 

(isa-instance 

(isa-instance 
(isa-instance 
(isa-instance 

(isa-instance 
(isa-instance 
(isa-instance 
(isa-instance 

(isa-instance 

(isa-instance 

(isa-instance 

(isa-instance 

(isa-instance 
(isa-instance 
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(setq «PRIMARY* '( 
((holding <box>) . (PICKUP-BOX)) 

((holding <key>) . (PICKUP-KEY)) 
((arm-empty) . (PUTDOWN-BOX PUTDOWN-KEY)) 
((next-to <box.l> <box.2>) . (PUTDOWH-BOX-HEXT-TO PUSH-BOX)) 
((next-to <box> <door>) . (PUSH-BOX-TO-DR)) 

((inroom <box> <room>) . (PUSH-BOX-THRU-DR CARRY-BOX-THRU-DR)) 

((inroom robot <room>) . (GO-THRU-DR)) 
((inroom <key> <room>) . (CARRY-KEY-THRU-DR)) 

((next-to robot <door>) . (GOTO-DR)) 

((next-to robot <box>) . (G0T0-B0X)) 

((next-to robot <key>) . (GOTO-KEY)) 

((dr-open <door>) . (OPEN)) 
((dr-closed <door>). (CLOSE)) 

((locked <door>) . (LOCK)) 

((unlocked <door>) . (UNLOCK)))) 

Example problem: 

Goal: '(and (next-to a d) (inroom b room3) (inroom a room4)) 

Initial State: 

'((arm-empty) (dr-to-rm door67 room7) (dr-to-rm door67 room6) 

(connects door67 room7 room6) (connects door67 room6 room7) 
(dr-to-rm door56 room6) (dr-to-rm door56 room5) 
(connects doorB6 room6 room5) (connects door56 roomB room6) 
(dr-to-rm door36 room6) (dr-to-rm door36 room3) 
(connects door36 room6 room3) (connects door36 room3 room6) 

(dr-to-rm door25 roomB) (dr-to-rm door25 room2) 
(connects door25 room5 room2) (connects door25 room2 roomB) 

(dr-to-rm door34 room4) (dr-to-rm door34 room3) 

(connects door34 room4 room3) (connects door34 room3 room4) 

(dr-to-rm door23 room3) (dr-to-rm door23 room2) 

(connects door23 room3 room2) (connects door23 room2 room3) 

(dr-to-rm doorl2 room2) (dr-to-rm doorl2 rooml) 
(connects doorl2 room2 rooml) (connects doorl2 rooml room2) 

(next-to c e) (dr-closed door67) (locked door67) 
(dr-closed door56) (locked doorB6) (dr-closed door36) 
(locked door36) (unlocked door26) (dr-closed door2B) 

(unlocked door34) (dr-open door34) (unlocked door23) 
(dr-closed door23) (dr-closed doorl2) (locked doorl2) 
(is-room room7) (is-room room6) (is-room roomB) (is-room room4) 

(is-room room3) (is-room room2) (is-room rooml) (is-door door67) 

(is-door doorB6) (is-door door36) (is-door door25) 

(is-door door34) (is-door door23) (is-door doorl2) (carriable •) 

(carriable d) (carriable c) (carriable b) (pushable d) (pushable c) 
(pushable b) (pushable a) (is-object key67) 
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(is-object key56) (is-object key36) 
(is-object key25) (is-object key34) 

(is-object key23) (is-object keyl2) (is-object e) 
(is-box e) (is-object d)(is-box d) (is-object c)(is-box c) 
(is-object b)(is-box b) (is-object a)(is-box a) 

(inroom e room4) (inroom d room2) (inroom c room4) (inroom b room7) 

(inroom a room3) (inroom key67 roomS) (inroom key56 rooml) 

(inroom key36 room3) (inroom key25 roomS) 

(inroom key34 rooml) (inroom key23 room7) 
(inroom keyl2 roomS) (inroom robot room5) (carriable key67) 
(is-key door67 key67) (carriable key56) 

(is-key door56 key56) (carriable key36) 

(is-key door36 key36) (carriable key25) 
(is-key door25 key25) (carriable key34) 
(is-key door34 key34) (carriable key23) 

(is-key door23 key23) (carriable keyl2) 
(is-key doori2 keyl2)) 

B.2     Experimental Results 

The experiments in this domain were run in CMU Common Lisp on a IBM RT Model 
130 with 16 megabytes of memory. The tables below compare PRODIGY without any 
control knowledge, PRODIGY with a set of hand-code control rules, and PRODIGY with 
the abstractions generated by ALPINE. The first 100 problems are the test problems 
used in Minton's experiments [Minton, 1988a]. 

The entries in the table are defined as follows: 

Prob Num The problem number. 

Time Total CPU time used in solving the problem. A 600 CPU second time bound 
was imposed on all problems. 

Nodes Total number of nodes searched in solving the problem. 

Len Length of the solution found. Zero if no solution exists. 

ACT Time required to create the abstraction hierarchy. This time is also included 
in the total CPU time for ALPINE. 

AbNodes Nodes searchedat each level in the hierarchy. Ordered from more abstract 
to less abstract levels. 

AbLen Solution length found at each level in the hierarchy.   Ordered from more 
abstract to less abstract levels. 
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Prob Prodigy Prodigy + HCR Prodigy + Alpine 
Num Time Nodes l«en Time N< 3des jen Time Nodes Len ACT AbNodes AbLen 

1 0.6 14 6 0.8 14 6 2.1 14 6 0.8 6,8 2,4 
2 0.3 10 4 0.5 10 4 1.5 10 4 0.7 4,0,6 1,0,3 
3 0.6 20 6 0.7 14 6 1.7 14 6 0.7 4,0,10 1,0,5 
4 0.5 15 6 0.8 15 6 2.2 17 6 1.0 4,4,9 1,1,4 
5 0.5 16 7 0.8 16 7 1.8 18 7 0.6 6,6,6 2,2,3 
6 0.3 12 5 0.5 12 5 1.3 12 5 0.6 8,4 3,2 
7 1.0 32 7 1.6 31 7 3.9 80 7 1.2 72,8 3,4 
8 1.3 35 15 1.9 33 15 3.3 35 15 1.0 4,8,23 1,3,11 
9 0.8 24 8 1.0 18 8 2.2 16 7 1.1 8,8 3,4 
10 0.9 26 12 1.5 26 12 2.4 26 9 0.9 16,10 4,5 
11 0.7 21 8 1.0 19 8 2.4 21 8 1.0 4,4,13 1,1,6 
12 1.4 31 14 2.0 30 14 3.8 31 14 1.3 17,14 7,7 
13 0.1 6 2 0.2 6 2 1.7 8 2 1.2 2,4,2 0,1,1 
14 1.1 27 12 1.3 21 9 3.0 23 9 1.2 4,11,8 1,4,4 
15 0.9 24 11 1.5 24 11 2.8 26 11 1.0 4,6,16 1,2,8 
16 0.6 20 9 1.0 20 9 2.2 20 9 0.9 10,10 4,5 
17 0.6 20 9 1.0 20 9 1.2 10 4 0.6 4,6 1,3 
18 0.2 8 3 0.4 8 3 1.2 8 3 0.7 4,4 1,2 
19 0.6 17 7 0.9 17 7 2.8 19 7 1.3 4,4,11 1,1,5 
20 1.6 33 11 1.7 24 11 4.2 31 11 1.4 23,8 7,4 
21 3.7 108 15 3.0 53 15 4.2 36 16 1.5 4,12,20 1,5,10 
22 0.5 16 7 0.9 16 7 2.2 18 7 0.8 6,6,6 2,2,3 
23 1.7 35 6 0.9 14 6 3.7 16 6 2.0 4,8,4 1,3,2 
24 1.3 35 13 1.6 28 13 4.8 21 8 2.7 2,11,8 0,4,4 
25 0.2 8 3 0.3 8 3 2.0 10 3 1.3 2,4,4 0,1,2 
26 1.1 34 13 1.4 28 13 4.0 32 14 1.5 4,10,18 1,4,9 
27 0.8 20 9 1.1 20 9 2.6 22 9 1.0 4,6,12 1,2,6 
28 0.8 26 8 1.0 18 8 3.2 34 8 1.2 2,22,10 0,3,5 
29 2.7 64 10 1.5 22 10 5.2 38 11 1.9 26,12 5,6 
30 1.1 34 12 1.4 26 12 3.3 34 12 1.2 20,14 5,7 
31 0.9 20 8 1.2 20 8 3.4 21 8 1.3 4,8,9 1,3,4 
32 1.9 46 20 2.7 44 20 5.0 47 20 1.2 9,16,22 3,6,11 
33 3.2 84 20 2.6 44 20 4.5 47 20 1.1 9,12,26 3,4,13 
34 1.0 25 10 1.4 25 10 3.0 26 10 1.1 4,9,13 1,3,6 
35 2.6 57 23 3.0 47 20 4.6 39 17 1.4 9,14,16 3,6,8 
36 3.4 86 21 2.7 46 21 5.0 49 21 1.0 9,10,10,20 3,4,4,10 
37 1.3 37 11 1.3 25 11 2.7 26 11 1.1 4,10,12 1,4,6 
38 0.9 29 4 1.4 29 4 1.9 22 4 1.0 18,4 2,2 
39 3.2 79 24 3.4 55 24 4.6 43 19 1.4 9,8,26 3,3,13 
40 1.1 27 10 1.5 27 10 3.0 34 10 0.9 18,6,10 3,2,5 
41 0.7 18 8 1.1 18 8 2.2 18 8 1.0 8,10 3,5 
42 1.6 35 8 2.1 35 8 3.3 22 8 1.3 8,6,8 2,2,4 
43 1.9 51 14 2.1 36 14 3.4 34 14 1.1 4,10,20 1,3,10 
44 0.6 18 5 0.9 18 5 1.5 14 5 0.7 8,6 2,3 
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Prob Prodigy Prodigy + HCR Prodigy + Alpine 
Num Time Nodes Len Time Nodes Len Time Nodes Len ACT AbNodes AbLen 

45 0.6 17 5 0.8 17 5 1.6 16 5 0.6 8,2,6 2,0,3 
46 0.2 6 2 0.3 6 2 1.3 6 2 0.9 4,2 1,1 
47 1.7 41 15 2.5 41 15 3.6 38 15 1.0 22,16 7,8 
48 3.4 77 25 4.0 62 25 6.1 51 22 1.6 11,10,30 4,3,15 
49 0.8 24 10 1.2 22 10 2.5 22 10 1.0 12,10 5,5 
50 2.3 53 22 3.2 53 22 5.0 51 22 1.4 4,17,30 1,6,15 
51 3.5 82 29 4.5 71 29 7.7 74 33 1.5 10,24,40 4,10,19 
52 1.4 44 7 0.9 17 7 2.3 16 7 1.3 10,6 4,3 
53 2.3 53 22 3.2 53 22 4.9 51 22 1.4 4,17,30 1,6,15 
54 0.5 12 5 0.8 12 5 3.4 24 7 1.5 4,10,4,6 1,2,1,3 
55 1.0 27 12 1.5 26 12 3.1 27 12 1.3 15,12 6,6 
56 4.3 99 20 3.7 55 20 6.4 54 22 1.8 12,16,26 4,5,13 
57 0.1 6 2 0.2 6 2 1.6 6 2 1.3 4,2 1,1 
58 1.1 28 12 1.7 28 12 4.1 28 12 2.0 4,14,10 1,6,5 
59 8.3 205 23 7.5 122 23 7.9 87 23 2.0 6,54,27 2,8,13 
60 6.3 169 27 5.1 79 27 7.5 64 28 1.9 10,20,34 4,8,16 
61 4.0 112 22 6.3 110 22 6.6 99 22 1.2 77,22 11,11 
62 1.1 29 10 1.7 29 10 4.1 30 10 2.0 4,18,8 1,5,4 
63 6.2 149 24 9.0 147 24 7.9 61 25 2.5 4,25,10,22 1,9,4,11 
64 3.9 78 26 5.0 71 26 9.0 62 26 3.4 40,22 15,11 
65 36.6 955 21 3.7 65 21 5.0 47 17 2.0 4,25,18 1,7,9 
66 6.7 167 35 4.1 62 27 8.6 101 30 1.9 11,55,35 4,9,17 
67 1.3 41 6 0.8 15 6 2.5 25 6 1.3 19,6 3,3 
68 4.9 119 31 3.0 47 18 7.0 74 18 2.0 4,49,21 1,7,10 
69 0.5 14 6 0.8 14 6 2.3 14 6 1.3 6,8 2,4 
70 4.0 107 26 4.1 67 26 11.0 152 37 1.2 112,6,34 18,2,17 
71 0.8 23 9 1.3 23 9 3.3 24 9 1.5 10,6,8 3,2,4 
72 15.1 352 25 3.9 55 25 3.0 18 8 0.8 6,0,12 2,0,6 
73 0.4 14 5 0.7 14 5 1.5 16 7 0.4 10,6 4,3 
74 1.1 35 9 1.8 35 9 2.2 31 10 0.4 23,8 6,4 
75 2.0 46 19 2.8 46 19 2.8 34 14 0.5 14,20 4,10 
76 2.7 56 24 3.8 56 24 3.2 36 16 0.4 16,20 6,10 
77 33.9 821 31 14.6 231 31 4.2 37 17 0.8 11,4,22 4,2,11 
78 3.6 77 14 4.8 77 14 4.6 34 14 0.8 14,4,16 4,2,8 
79 1.2 25 11 1.7 25 11 2.4 25 11 0.5 11,14 4,7 
80 0.2 6 2 0.2 6 2 0.7 6 2 0.8 4,2 1,1 
81 1.8 42 18 2.6 42 18 3.4 39 18 0.5 15,24 6,12 
82 0.4 10 4 0.6 10 4 1.6 10 4 0.8 6,4 2,2 
83 2.6 59 26 3.7 59 26 5.3 50 23 1.2 28,22 12,11 
84 3.9 73 31 4.9 73 31 4.3 33 13 1.3 6,14,13 2,5,6 
85 24.1 591 31 32.2 551 31 8.3 134 22 0.8 104,30 7,15 
86 2.2 56 22 2.9 50 19 3.5 42 18 0.7' 28,14 11,7 
87 1.1 32 9 1.7 32 9 2.0 21 9 0.6 13,8 5,4 
88 1.2 32 13 1.8 32 13 2.0 21 9 0.6 13,8 5,4 
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Prob Prodigy Prodigy + HCR Prodigy + Alpine 
Num Time Nodes L,en Time Nodes Jen Time Nodes Len ACT AbNodes Ab Len 

89 5.2 104 32 6.8 104 32 8.1 75 32 1.1 11,20,44 4,7,21 
90 48.6 1171 21 3.6 60 21 21.2 360 21 0.7 344,16 13,8 
91 36.1 900 6 17.0 291 6 2.4 16 6 1.1 4,4,8 1,1,4 
92 2.5 69 8 3.8 69 8 2.2 19 8 0.7 11,8 4,4 
93 0.5 16 6 1.2 21 8 2.3 16 6 1.2 10,6 3,3 
94 1.2 33 14 2.0 33 14 3.8 35 16 1.2 21,14 9,7 
95 11.1 285 50 8.0 124 47 13.5 223 48 1.4 4,167,52 1,21,26 
96 2.4 54 23 3.4 54 23 3.6 32 14 1.2 16,16 6,8 
97 4.1 109 13 2.7 41 19 3.6 30 13 1.4 4,10,16 1,4,8 
98 0.1 6 2 0.2 6 2 1.6 6 2 1.2 4,2 1,1 
99 58.9 1367 30 4.7 67 30 6.4 61 27 1.3 4,27,30 1,11,15 
100 3.2 80 18 4.8 80 18 5.1 49 18 1.1 27,6,16 8,2,8 
101 0.4 8 3 0.5 8 3 1.6 8 3 0.4 4,4 1,2 
102 5.0 91 37 6.6 91 37 7.5 85 37 0.5 39,46 14,23 
103 2.2 44 14 3.0 44 14 4.4 33 14 0.7 4,11,18 1,4,9 
104 3.5 107 0 3.4 65 0 3.8 87 0 0.4 
105 3.6 75 26 5.0 75 26 5.4 63 26 0.5 31,32 10,16 
106 0.1 6 2 0.2 6 2 1.1 6 2 0.6 4,2 1,1 
107 1.4 24 8 1.7 24 8 3.0 18 8 0.7 6,2,10 2,1,5 
108 0.1 6 2 0.2 6 2 1.1 6 2 1.0 4,2 1,1 
109 0.2 6 2 0.2 6 2 0.8 6 2 0.4 4,2 1,1 
110 29.4 648 22 40.1 644 22 5.8 50 21 0.7 14,4,32 4,2,15 
111 0.4 6 2 0.5 6 2 1.8 6 2 0.7 4,0,2 1,0,1 
112 1.0 24 10 1.4 24 10 2.0 23 10 0.4 9,14 3,7 
113 0.1 6 2 0.3 6 2 0.8 6 2 0.4 4,2 1,1 
114 0.6 14 6 0.9 14 6 1.5 14 6 0.4 4,10 1,5 
115 41.2 939 26 10.2 156 26 20.6 297 26 1.0 271,26 13,13 
116 1.5 40 12 2.2 40 12 2.5 31 12 0.4 15,16 4,8 
117 113.5 2253 27 140.1 2053 27 25.1 344 29 1.0 316,28 15,14 
118 15.2 355 25 7.8 118 25 4.0 31 13 0.7 13,0,18 4,0,9 
119 267.7 5391 38 346.2 4941 38 84.9 1219 38 0.9 1183,36 20,18 
120 6.4 124 45 8.4 122 45 5.2 58 25 0.5 26,32 9,16 
121 0.8 14 6 0.9 14 6 2.3 14 6 0.7 4,2,8 1,1,4 
122 5.6 119 28 7.8 119 28 6.3 76 28 0.5 42,34 11,17 
123 7.3 159 25 10.1 159 25 4.1 60 11 0.4 46,14 4,7 
124 3.0 62 25 4.1 62 25 5.3 60 25 0.6 36,24 13,12 
125 6.5 165 14 2.0 31 14 3.4 30 14 0.7 4,6,20 1,3,10 
126 1.5 37 11 2.3 37 11 2.2 10 4 1.0 6,4 2,2 
127 7.8 186 15 7.0 107 21 4.1 35 13 1.0 4,17,14 1,5,7 
128 8.8 179 31 11.7 174 31 7.7 68 28 1.0 6,23,39 2,7,19 
129 42.9 833 55 37.7 541 55 30.7 395 49 0.9 349,46 26,23 
130 82.2 1739 0 108.7 1683 0 12.1 196 0 1.1 
131 40.7 1091 0 65.5 1091 0 122.5 2920 0 1.0 
132 28.9 806 0 19.2 328 0 17.8 405 0 1.0 
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Prob Prodigy Prodigy + HCR Prodigy + Alpine 

Num Time Nodes Len Time Nodes Len Time Nodes Len ACT AbNodes AbLen 

133 4.2 110 0 5.9 98 0 10.0 193 0 0.8 
134 33.5 833 0 15.2 250 0 17.5 371 0 1.3 
135 19.8 395 50 11.4 137 55 16.4 152 46 1.5 114,38 27,19 

136 1.2 27 10 1.8 27 10 2.9 26 10 0.6 10,6,10 3,2,5 

137 6.3 114 48 8.6 113 48 11.6 113 48 1.3 69,44 26,22 

138 62.2 1539 0 60.6 963 0 71.7 1525 0 1.2 
139 124.9 2616 54 29.7 443 54 18.2 221 56 1.3 13,146,62 4,21,31 

140 197.8 3874 19 133.6 1968 19 5.1 43 19 1.0 9,10,24 3,4,12 

141 0.7 18 5 1.1 18 5 1.8 14 5 0.8 8,6 2,3 
142 6.2 116 47 8.5 116 47 10.2 109 48 1.0 53,56 20,28 

143 454.9 8883 0 444.3 6481 0 71.5 1154 0 1.0 
144 3.6 107 0 3.6 65 0 4.5 98 0 0.6 
145 9.1 172 48 9.6 132 48 8.2 74 34 1.1 6,24,44 2,10,22 

146 0.5 12 5 0.7 12 5 1.8 12 5 0.9 8,4 3,2 
147 2.5 46 16 3.3 46 16 4.6 46 16 0.9 46 16 
148 0.8 21 8 1.2 21 8 2.3 16 7 0.9 10,6 4,3 
149 0.7 18 6 1.1 18 6 1.7 14 6 0.6 8,6 3,3 
150 30.4 664 30 40.8 660 30 12.6 138 29 1.5 108,30 14,15 

151 2.9 42 14 3.7 42 14 5.2 20 8 1.8 6,6,8 2,2,4 

152 160.1 3130 50 11.0 161 50 16.0 139 59 1.3 14,43,26,56 4,15,12,28 
153 11.2 205 67 104.8 1415 51 12.7 156 29 1.3 14,111,31 3,11,15 
154 9.1 188 36 16.4 239 45 13.4 135 42 2.0 14,69,52 4,13,25 

155 336.6 6605 56 9.4 127 56 12.6 119 52 1.7 4,57,58 1,22,29 

156 70.9 1453 71 19.4 267 71 37.5 470 69 1.9 402,68 35,34 

157 40.7 853 31 53.2 836 27 21.4 422 27 1.0 388,34 10,17 

158 174.7 3428 39 223.4 3226 39 72.0 985 39 1.9 957,28 25,14 
159 19.2 436 32 13.3 199 32 6.9 50 20 1.4 19,8,23 6,3,11 

160 294.7 5927 60 30.0 447 57 16.1 140 50 2.3 20,84,36 5,27,18 

161 14.0 259 59 7.0 95 31 21.9 269 59 1.0 269 59 
162 11.1 202 61 12.4 162 61 9.6 94 39 1.3 4,38,52 1,12,26 
163 16.2 365 41 22.4 347 41 16.0 221 45 1.6 4,169,48 1,20,24 

164 9.1 178 45 12.9 177 45 13.1 126 45 1.6 86,40 25,20 
165 9.5 205 44 13.5 205 44 24.7 485 53 1.3 423,62 22,31 

166 11.4 200 68 9.2 124 39 10.6 100 42 1.5 6,49,45 2,18,22 

167 61.4 1264 54 78.2 1130 54 20.4 272 51 1.5 4,214,54 1,23,27 

168 97.4 2042 27 4.7 70 27 75.7 1177 23 1.4 1161,16 15,8 

169 1.5 33 15 2.3 33 15 4.0 62 11 0.9 50,12 5,6 
170 2.5 58 15 3.7 58 15 4.4 34 15 1.3 2,14,18 0,6,9 

171 4.3 83 13 9.1 133 29 11.8 118 35 2.4 4,78,36 1,16,18 

172 33.2 685 70 12.9 177 63 15.1 173 59 1.5 9,84,80 3,16,40 

173 194.6 4069 76 17.1 224 69 19.2 194 45 2.5 15,141,38 5,21,19 
174 13.1 382 0 7.4 124 0 14.1 358 0 1.1 
175 5.4 153 0 9.0 148 0 6.4 134 0 1.2 
176 600.0 11452 — 600.0 8153 — 600.0 11058 — 1.9 
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Prob ] Prodigy Prodigy + HCR Prodigy + Alpine 
Num Time Nodes _,en Time Nodes L,en Time Nodes Len ACT AbNodes AbLen 

177 150.8 3028 83 50.1 753 73 124.3 1925 84 2.2 1857,68 50,34 
178 20.0 491 0 18.0 297 0 12.8 261 0 1.4 
179 62.4 1241 59 64.4 877 59 13.7 129 56 1.8 16,38,75 5,14,37 
180 134.7 2894 14 137.6 2041 9 6.4 42 18 1.6 8,12,22 3,5,10 
181 306.8 5697 0 72.2 1009 0 47.6 925 0 1.7 
182 600.0 11506 — 600.0 8087 — 12.0 134 0 3.2 
183 252.2 6010 0 77.7 1202 0 36.2 584 0 2.9 
184 271.9 5283 63 80.2 1167 59 95.2 1448 64 2.1 1392,56 36,28 
185 39.0 749 44 8.2 107 44 10.3 84 35 2.0 11,33,40 4,11,20 
186 30.0 854 0 15.2 264 0 7.3 121 0 1.5 
187 7.4 132 35 8.5 115 32 8.7 63 26 1.7 14,18,31 4,8,14 
188 600.0 11466 — 600.0 8305 — 600.0 8954 — 2.7 
189 5.9 133 33 8.7 133 33 6.5 49 22 1.6 4,17,28 1,7,14 
190 36.1 780 60 46.2 696 60 31.0 437 55 1.9 6,369,62 2,22,31 
191 173.8 3688 0 137.3 1994 0 20.8 369 0 1.8 
192 1.9 45 15 2.7 45 15 4.2 45 15 1.2 45 15 
193 30.6 714 16 30.4 453 31 6.7 39 16 1.8 6,13,8,12 2,5,4,5 
194 27.9 640 31 16.9 268 31 10.2 72 31 2.1 11,27,34 4,11,16 
195 10.8 207 50 14.4 206 50 10.4 69 31 1.9 12,19,38 5,8,18 
196 39.7 899 65 26.1 421 65 13.7 126 47 2.0 12,54,60 5,12,30 
197 20.4 407 63 22.6 342 59 21.0 197 72 1.7 19,97,81 7,26,39 
198 4.8 106 27 7.9 126 29 20.2 396 30 1.4 356,14,26 11,6,13 
199 256.6 5266 0 94.8 1448 0 35.4 633 0 2.0 
200 35.8 804 33 12.5 194 33 10.6 114 33 1.5 11,67,36 3,12,18 
201 203.4 4003 90 471.5 6691 66 34.5 399 70 2.8 8,311,20,60 3,28,10,29 
202 50.2 1154 53 23.1 365 56 18.5 183 70 2.6 2,121,60 0,40,30 
203 320.0 6544 0 169.1 2518 0 600.0 8735 — 1.6 
204 600.0 11947 — 20.1 290 66 19.2 142 62 2.4 12,62,20,48 3,26,9,24 
205 27.5 792 0 17.6 303 0 5.6 71 0 1.7 
206 445.0 8166 77 35.6 537 77 23.6 212 87 3.3 12,112,88 5,38,44 
207 6.7 114 36 8.2 113 35 12.1 122 36 1.7 122 36 
208 600.0 11453 — 15.6 219 78 23.7 321 70 1.9 9,232,80 3,27,40 
209 82.2 2077 0 22.4 371 0 223.0 5239 0 1.9 
210 600.0 11239 — 600.0 8338 — 600.0 9394 — 1.7 
211 114.4 2770 0 97.1 1551 0 11.9 217 0 2.1 
212 34.0 745 38 50.3 745 38 20.1 248 41 1.7 2,198,14,34 0,18,6,17 
213 600.0 12678 — 600.0 8807 — 600.0 10878 — 3.0 
214 600.0 11275 — 600.0 7831 — 600.0 .9596 — 2.9 
215 115.5 2962 0 121.6 1857 0 105.6 2165 0 2.5 
216 600.0 11112 — 600.0 8432 — 600.0 9496 — 2.2 
217 9.2 187 37 12.5 187 37 11.1 142 33 1.9 106,36 15,18 
218 600.0 12121 — 600.0 8131 — 600.0 10323 — 2.5 
219 71.4 1544 0 91.0 1396 0 62.2 1367 0 2.3 
220 26.7 546 61 27.1 415 61 16.3 158 56 2.3 16,77,65 5,19,32 
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Prob Prodigy Prodigy + HCR Prodigy + Alpine 
Num Time Nodes Len Time Nodes Len Time Nodes Len ACT AbNodes AbLen 

221 124.9 2544 44 83.2 1188 51 16.7 177 48 2.3 6,131,40 2,26,20 

222 600.0 11902 — 600.0 8690 — 13.8 89 38 2.6 14,29,14,32 5,11,7,15 

223 600.0 12743 — 94.9 1486 0 31.0 628 0 2.3 
224 8.6 153 59 10.9 153 59 16.1 128 55 2.1 11,41,22,54 4,14,10,27 

225 145.3 2837 36 8.6 130 36 106.4 1513 27 2.5 1491,22 16,11 
226 600.0 10917 — 600.0 8117 — 600.0 8993 — 2.8 
227 8.5 150 49 7.9 102 41 10.7 112 30 2.6 4,72,12,24 1,12,5,12 

228 12.8 234 51 13.5 176 39 12.2 99 42 2.6 8,44,47 3,16,23 

229 20.2 413 62 14.2 202 52 20.5 175 59 4.5 6,119,50 2,32,25 
230 202.9 4163 99 23.7 294 92 35.8 367 94 4.3 15,280,72 5,53,36 
231 22.2 561 0 18.0 297 0 30.3 614 0 2.4 
232 37.4 955 0 33.7 540 0 48.9 948 0 2.6 
233 600.0 11519 — 600.0 8068 — 15.6 200 0 4.3 
234 600.0 11114 — 600.0 8110 — 600.0 9573 — 2.7 
235 55.4 1339 0 43.7 721 0 27.3 568 0 2.3 
236 84.2 1580 77 68.8 918 77 22.6 241 76 2.7 25,117,99 8,19,49 
237 143.2 2893 14 137.1 2043 10 8.5 44 19 2.4 8,12,6,18 u, 0,0,0 

238 600.0 11046 — 600.0 8066 — 133.1 2474 0 4.5 
239 246.8 6090 0 81.6 1274 0 37.1 584 0 3.8 
240 281.2 5512 85 83.7 1222 81 159.8 2215 86 3.0 2145,70 51,35 
241 59.0 1140 62 11.9 142 59 14.8 116 50 2.9 18,41,57 7,15,28 
242 73.5 1968 0 30.2 522 0 17.3 314 0 2.6 
243 600.0 11084 — 600.0 7781 — 600.0 10668 — 2.6 
244 6.3 133 33 8.9 133 33 8.2 54 23 2.2 4,24,8,18 1,10,3,9 
245 600.0 11596 — 199.0 2868 0 31.9 615 0 2.4 
246 75.2 1626 0 21.4 365 0 600.0 10265 — 2.6 
247 600.0 11554 — 600.0 8623 — 14.9 153 38 2.5 8,99,14,32 3,13,7,15 
248 45.2 922 46 22.5 321 46 19.3 132 58 4.5 13,75,44 5,31,22 
249 14.2 248 65 18.8 247 65 16.6 103 46 2.8 12,35,16,40 5,14,7,20 
250 40.3 901 66 28.0 423 66 17.5 144 55 2.8 12,58,22,52 5,14,10,26 
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Appendix C 

Machine-Shop Planning and 
Scheduling 

The version of the machine-shop domain used in these experiments is almost identical 
to the original PRODIGY version presented in [Minton, 1988a]. There are only two 
minor syntactic differences from the original problem-space definition. First, the 
polish operator had a disjunctive precondition in the original domain and in the 
version used here this operator was separated into two operators. ALPINE can handle 
the full PRODIGY language, but it does so in a conservative manner and it forces 
disjunctive conditions into the same abstraction level. This particular operator was 
separated into two operators so that ALPINE could produce a finer-grained hierarchy. 
Second, the fact that an operation could not be performed on an object once it was 
joined was made explicit by adding negated joined conditions to each operator. This 
condition was implicit in the fact that the original objects are deleted when they are 
joined. This change allows the system to separate the joined literals from some of the 
other literals in a few additional situations. 

C.l    Problem Space Definition 
(POLISH-l 

(params (<obj-pc> <time-pc> <time-prev-pc>)) 
(preconds 

(and 
(is-object <obj-pc>) 
(" (joined <obj-pc> <obj-pc2> <or-pc>)) 
(" (joined <obj-pc2> <obj-pc> <or-pc>)) 
(clampable <obj-pc> POLISHER) 
(last-scheduled <obj-pc> <time-prev-pc>) 
(later <time-pc> <time-prev-pc>) 

157 
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(idle POLISHER <time-pc>))) 

(effects ( 
(del (surface-condition <obj-pc> <surface-*7-pc>)) 

(add (surface-condition <obj-pc> POLISHED)) 
(del (last-scheduled <obj-pc> <time-prev-pc>)) 
(add (last-scheduled <obj-pc> <time-pc>)) 

(add (scheduled <obj-pc> POLISHER <time-pc>))))) 

(POLISH-2 
(params (<obj-pr> <time-pr> <time-prev-pr>)) 

(preconds 

(and 

(is-object <obj-pr>) 
(" (joined <obj-pr> <obj-pr2> <or-pr>)) 
(" (joined <obj-pr2> <obj-pr> <or-pr>)) 

(shape <obj-pr> RECTANGULAR) 
(last-scheduled <obj-pr> <time-prev-pr>) 
(later <time-pr> <time-prev-pr>) 
(idle POLISHER <time-pr>))) 

(effects ( 
(del (surface-condition <obj-pr> <surface-*7-pr>)) 
(add (surface-condition <obj-pr> POLISHED)) 
(del (last-scheduled <obj-pr> <time-prev-pr>)) 

(add (last-scheduled <obj-pr> <time-pr>)) 

(add (scheduled <obj-pr> POLISHER <time-pr>))))) 

(GRIND 

(params (<obj-g> <time-g> <time-prev-g>)) 
(preconds 

(and 
(is-object <obj-g>) 

(" (joined <obj-g> <obj-g2> <or-g>)) 
(" (joined <obj-g2> <obj-g> <or-g>)) 
(last-scheduled <obj-g> <time-prev-g>) 

(later <time-g> <time-prev-g>) 
(idle GRINDER <time-g>))) 

(effects ( 
(del (surface-condition <obj-g> <surface-*l-g>)) 
(add (surface-condition <obj-g> SMOOTH)) 
(del (painted <obj-g> <color-*2-g>)) 

(del (last-scheduled <obj-g> <time-prev-g>)) 
(add (last-scheduled <obj-g> <time-g>)) 

(add (scheduled <obj-g> GRINDER <time-g>))))) 

(ROLL 

(params (<obj-r> <time-r> <time-prev-r>)) 

(preconds 
(and 
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(is-object <obj-r>) 

(" (joined <obj-r> <obj-r2> <or-r>)) 

(" (joined <obj-r2> <obj-r> <or-r>)) 

(last-scheduled <obj-r> <time-prev-r>) 
(later <time-r> <time-prev-r>) 
(idle ROLLER <time-r>) 

(shape <obj-r> <shape-old-r>))) 
(effects ( 

(del (shape <obj-r> <shape-old-r>)) 
(del (temperature <obj-r> <temp-old-r>)) 

(del (has-hole <obj-r> <width-*3-r> <orientation-*4-r»)) 
(del (surface-condition <obj-r> <surface-*l-r>)) 
(del (painted <obj-r> <color-*2-r>)) 

(del (last-scheduled <obj-r> <time-prev-r>)) 
(add (temperature <obj-r> HOT)) 
(add (shape <obj-r> CYLINDRICAL)) 
(add (last-scheduled <obj-r> <time-r>)) 

(add (scheduled <obj-r> ROLLER <time-r>))))) 

(LATHE 

(params (<obj-l> <time-l> <shape-l> <time-prev-l>)) 
(preconds 

(and 

(is-object <obj-l>) 

(" (joined <obj-l> <obj-12> <or-l>)) 
(" (joined <obj-12> <obj-l> <or-l>)) 

(last-scheduled <obj-l> <time-prev-l>) 
(later <time-l> <time-prev-l>) 
(idle LATHE <time-l>) 
(shape <obj-l> <shape-l>))) 

(effects ( 

(del (shape <obj-l> <shape-l>)) 

(del (surface-condition <obj-l> <surface-*3-l>)) 
(del (painted <obj-l> <color-*4-l>)) 

(del (last-scheduled <obj-l> <time-prev-l>)) 
(add (surface-condition <obj-l> ROUGH)) 
(add (shape <obj-l> CYLINDRICAL)) 
(add (last-scheduled <obj-l> <time-l>)) 
(add (scheduled <obj-l> LATHE <time-l>))))) 

(PUNCH 

(params (<obj-u> <time-u> <width-hole-u> <orientation-u> <time-prev-u>)) 
(preconds 

(and 

(is-object <obj-u>) 

(" (joined <obj-u> <obj-u2> <or-u>)) 

(" (joined <obj-u2> <obj-u> <or-u>)) 

(is-punchable <obj-u> <width-hole-u> <orientation-u>) 
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(clampable <obj-u> PUNCH) 

(last-scheduled <obj-u> <time-prev-u>) 

(later <time-u> <time-prev-u>) 

(idle PUNCH <time-u>))) 

(effects ( 
(del (surface-condition <obj-u> <surface-*33-u>)) 
(del (last-scheduled <obj-u> <time-prev-u>)) 

(add (surface-condition <obj-u> ROUGH)) 
(add (has-hole <obj-u> <width-hole-u> <orientation-u>)) 
(add (last-scheduled <obj-u> <time-u>)) 

(add (scheduled <obj-u> PUNCH <time-u>))))) 

(DRILL-PRESS 
(params (<obj-d> <time-d> <width-hole-d> <orientation-d> <time-prev-d>)) 

(preconds 

(and 
(is-object <obj-d>) 
(" (joined <obj-d> <obj-d2> <or-d>)) 

(" (joined <obj-d2> <obj-d> <or-d>)) 
(is-drillable <obj-d> <orientation-d>) 
(last-scheduled <obj-d> <time-prev-d>) 

(later <time-d> <time-prev-d>) 
(idle DRILL-PRESS <time-d>) 
(have-bit <width-hole-d>))) 

(effects ( 
(del (last-scheduled <obj-d> <time-prev-d>)) 
(add (has-hole <obj-d> <width-hole-d> <orientation-d>)) 

(add (last-scheduled <obj-d> <tine-d>)) 

(add (scheduled <obj-d> DRILL-PRESS <time-d>))))) 

(BOLT 
(params (<obj-l-b> <obj-2-b> <time-b> <obj-neu-b> <time-prevl-b> 

<time-prev2-b> <orientation-b> <width-b> <bolt-b>)) 

(preconds 

(and 
(is-object <obj-l-b>) 
(is-object <obj-2-b>) 
(" (joined <obj-l-b> <obj-l-b2> <or-b>)) 

(" (joined <obj-l-b2> <obj-l-b> <or-b>)) 

(" (joined <obj-2-b> <obj-2-b2> <or-b>)) 
(" (joined <obj-2-b2> <obj-2-b> <or-b>)) 
(can-be-bolted <obj-l-b> <obj-2-b> <orientation-b>) 

(is-bolt <bolt-b>) 
(is-width <width-b> <bolt-b>) 
(has-hole <obj-i-b> <width-b> <orientation-b>) 

(has-hole <obj-2-b> <width-b> <orientation-b>) 

(last-scheduled <obj-l-b> <time-prevl-b>) 
(last-scheduled <obj-2-b> <time-prev2-b>) 
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(later <time-b> <time-prevl-b>) 
(later <time-b> <time-prev2-b>) 

(idle BOLTING-MACHINE <time-b>) 

(composite-object <obj-new-b> <orientation-b> <obj-i-b> <obj-2-b>))) 
(effects ( 

(del (last-scheduled <obj-l-b> <time-prevl-b>)) 

(del (last-scheduled <obj-2-b> <time-prev2-b>)) 

(add (last-scheduled <obj-new-b> <time-b>)) 

(add (is-object <obj-new-b>)) 
(del (is-object <obj-l-b>)) 

(del (is-object <obj-2-b>)) 

(add (joined <obj-i-b> <obj-2-b> <orientation-b>)) 

(add (scheduled <obj-new-b> BOLTING-MACHINE <time-b>))))) 

(WELD 
(params (<obj-l-w> <obj-2-H> <time-w> <obj-new-w> <time-prevl-w> 

<time-prev2-w> <orientation-w>)) 
(preconds 

(and 

(is-object <obj-i-w>) 
(is-object <obj-2-w>) 

(" (joined <obj-l-w> <obj-l-w2> <or-w>)) 
(" (joined <obj-i-w2> <obj-l-w> <or-w>)) 
(" (joined <obj-2-w> <obj-2-w2> <or-w>)) 
(* (joined <obj-2-w2> <obj-2-w> <or-w>)) 
(can-be-welded <obj-l-w> <obj-2-w> <orientation-w>) 
(last-scheduled <obj-l-w> <time-prevl-w>) 
(last-scheduled <obj-2-w> <time-prev2-w>) 
(later <time-w> <time-prevl-w>) 
(later <time-w> <time-prev2-w>) 
(idle WELDER <time-w>) 

(composite-object <obj-new-w> <orientation-w> <obj-l-w> <obj-2-w>))) 
(effects ( 

(del (last-scheduled <obj-l-w> <time-prevl-w>)) 
(del (last-scheduled <obj-2-w> <time-prev2-w>)) 
(add (last-scheduled <obj-new-w> <time-w>)) 
(del .(temperature <obj-new-w> <temp-old*>)) 

(add (temperature <obj-new-w> HOT)) 
(add (is-object <obj-new-w>)) 
(del (is-object <obj-l-w>)) 

(del (is-object <obj-2-w>)) 
(add (joined <obj-l-w> <obj-2-»> <orientation-w>)) 
(add (scheduled <obj-neu-w> WELDER <time-w>))))) 

(SPRAY-PAINT 
(params (<obj-s> <time-s> <color-s> <time-prev-s>)) 
(preconds 

(and 
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(sprayable <color-s>) 

(is-object <obj-8>) 
(" (joined <obj-s> <obj-s2> <or-s>)) 

(" (joined <obj-s2> <obj-s> <or-s>)) 
(shape <obj-s> <shape-s-s>) 
(regular-shape <shape-s-s>) 

(clampable <obj-s> SPRAY-PAIKTER) 

(last-scheduled <obj-s> <time-prev-s>) 

(later <time-s> <time-prev-s>) 
(idle SPRAY-PAINTER <time-s>))) 

(effects ( 

(add (painted <obj-s> <color-s>)) 

(del (surface-condition <obj-s> <surface-*2-s>)) 

(del (last-scheduled <obj-s> <time-prev-s>)) 
(add (last-scheduled <obj-s> <time-s>)) 

(add (scheduled <obj-s> SPRAY-PAIKTER <time-s>))))) 

(IMMERSION-PAIHT 
(params (<obj-i> <time-i> <color-i> <time-prev-i>)) 
(preconds 

(and 
(is-object <obj-i>) 

(" (joined <obj-i> <obj-i2> <or-i>)) 
(" (joined <obj-i2> <obj-i> <or-i>)) 
(have-paint-for-immersion <color-i>) 
(last-scheduled <obj-i> <time-prev-i>) 
(later <time-i> <time-prev-i>) 

(idle IMMERSION-PAINTER <time-i>) 

)) 
(effects ( 

(add (painted <obj-i> <color-i>)) 

(del (last-scheduled <obj-i> <time-prev-i>)) 
(add (last-scheduled <obj-i> <time-i>)) 

(add (scheduled <obj-i> IMMERSION-PAINTER <time-i>))))) 

(IS-CLAMPABLE 
(params (<obj-l> <machine>)) 

(preconds 
(and 

(has-clamp <machine>) 

(temperature <obj-l> COLD))) 
(effects ((add (clampable <obj-l> <machine>))))) 

(INFER-IDLE 

(params (<machine-i> <time-t>)) 
(preconds 

(forall (<obj-2> <machine-2>) 

(scheduled <obj-2> <machine-2> <time-t>) 
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(not-equal <machine-2> <machine-l>))) 
(effects ( 

(add (idle <machine-l> <time-t>))))) 

(setq »AXIOMS* nil) 

(setq »VARIABLE-TYPING* nil) 

(setq »PRIMARY* 
'(((surface-condition <obj> POLISHED) . (POLISH-1 POLISH-2)) 
((surface-condition <obj> SMOOTH) . (GRIND)) 

((shape <obj> CYLINDRICAL) . (ROLL LATHE)) 

((shape <obj> RECTANGULAR) . nil) 

((has-hole <obj> <width> <orientation>) . (PUNCH DRILL-PRESS)) 
((joined <objl> <obj2> <orientation>) . (BOLT WELD)) 

((painted <obj> <color>) . (SPRAY-PAINT IMMERSION-PAINT)) 
((clampable <obj> <machine>) . (IS-CLAMPABLE)) 
((idle <machine> <time>) . (INFER-IDLE)) 
((last-scheduled <obj> <time>) . nil) 

((scheduled <obj> <machine> <time>) . nil) 
((is-object <obj>) . nil) 

((temperature <obj> <temp>) . nil) 
((" (joined <objl> <obj2> <orientation>)) . (t)) 

)) 

Example Problem: 

Goal: '(and (has-hole d (4 mm) orientation-4) (shape d cylindrical) 

(surface-condition e smooth) (painted d (water-res white))) 

Initial State: 

'((last-time 10) (is-bolt (bl (1.199999 cm))) (is-bolt (b2 (1 cm))) 
(is-bolt (b3 (4 mm))) (is-bolt (b4 (1.4 cm))) 
(is-bolt (b5 (1.4 cm))) (last-scheduled e 0) (last-scheduled d 0) 
(last-scheduled c 0) (last-scheduled b 0) (last-scheduled a 0) 

(has-hole e (8 mm) orientation-4) (surface-condition e rough) 
(temperature e cold) (shape e irregular) (is-object e) 
(painted d (regular red)) (temperature d cold) 

(shape d undetermined) (is-object d) (painted c (regular white)) 
(temperature c cold) (shape c cylindrical) (is-object c) 

(has-hole b (8 mm) orientation-4) (painted b (water-res white)) 
(surface-condition b smooth) (temperature b cold) 

(shape b undetermined) (is-object b) (painted a (regular white)) * 

(temperature a cold) (shape a undetermined) (is-object a)) 
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C.2    Experimental Results 
The experiments in this domain were run in CMU Common Lisp on a IBM RT Model 
130 with 16 megabytes of memory. The first set of six tables below compares PRODIGY 
without any control knowledge, PRODIGY with a set of hand-code control rules, and 
PRODIGY with the abstractions generated by ALPINE. The second set of six tables 
below compares PRODIGY with the control rules produced by EBL [Minton, 1988a], 
PRODIGY with the control rules produced by STATIC [Etzioni, 1990], and PRODIGY 
with both the hand-code control rules and the abstractions produced by ALPINE. 
The first 100 problems in each set of tables are the test problems used in Minton's 
experiments [Minton, 1988a]. 

The entries in the table are denned as follows: 

Prob Num The problem number. 

Time Total CPU time used in solving the problem. A 600 CPU second time bound 
was imposed on all problems. 

Nodes Total number of nodes searched in solving the problem. 

Len Length of the solution found. Zero if no solution exists. 

ACT Time required to create the abstraction hierarchy. This time is also included 
in the total CPU time for ALPINE. 

AbNodes Nodes searched at each level in the hierarchy. Ordered from more abstract 
to less abstract levels. 

AbLen Solution length found at each level in the hierarchy.   Ordered from more 
abstract to less abstract levels. 
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Prob Prodigy Prodigy + HCR Prodigy + Alpine 
Num Time Nodes Len Time Nodes Len Time Nodes Len ACT AbNodes AbLen 

1 0.7 19 8 2.2 19 8 2.7 19 8 0.6 4,8,7   1,4,3 
2 1.1 34 0 0.1 1 0 1.7 4 0 1.0 
3 0.2 6 2 0.3 6 2 1.7 6 2 0.5 4,0,2   1,0,1 
4 0.4 10 4 0.8 10 4 2.4 12 4 0.8 4,4,0,4 1,1,0,2 
5 0.4 15 6 1.7 15 6 2.3 15 6 0.6 4,4,7   1,2,3 
6 0.5 21 0 0.0 1 0 1.3 6 0 0.7 
7 0.2 8 3 0.5 8 3 2.0 10 3 0.7 2,0,4,2,2 0,0,1,1,1 
8 1.1 34 0 0.1 1 0 1.6 4 0 0.9 
9 0.3 10 4 0.9 10 4 1.8 10 4 0.7 6,0,4  2,0,2 
10 0.6 19 8 3.0 19 8 2.5 19 8 0.6 4,8,7   1,4,3 
11 0.1 2 0 0.1 1 0 0.7 2 0 0.5 
12 0.5 15 6 0.4 6 2 2.4 15 6 0.6 4,4,7   1,2,3 
13 0.2 8 3 0.5 8 3 1.9 8 3 0.5 4,2,2   1,1,1 
14 0.4 12 5 1.2 12 5 2.1 12 5 0.7 6,2,4   2,1,2 
15 0.2 6 2 0.4 6 2 1.6 6 2 0.6 4,0,2   1,0,1 
16 22.6 718 0 119.3 424 0 3.0 28 0 0.8 
17 0.6 20 9 2.3 16 7 3.4 22 9 1.0 4,8,2,8 1,3,1,4 
18 0.9 36 0 0.1 1 0 1.7 15 0 0.8 
19 5.6 178 0 0.1 1 0 2.7 28 0 1.0 
20 0.8 36 0 0.1 1 0 1.2 2 0 0.8 
21 1.4 44 0 0.1 1 0 1.9 6 0 1.1 
22 0.2 8 3 0.5 8 3 2.0 10 3 0.8 2,4,2,2 0,1,1,1 
23 0.1 6 2 0.3 6 2 1.2 6 2 0.5 4,0,2   1,0,1 
24 0.7 16 6 2.4 16 7 4.1 25 6 1.1 4,4,8,3,6 1,1,1,0,3 
25 16.1 642 0 0.1 1 0 2.3 15 0 1.2 
26 0.7 20 8 3.1 20 8 2.9 23 8 0.6 6,10,7   1,4,3 
27 0.4 10 4 0.9 10 4 2.5 10 4 0.9 6,0,4  2,0,2 
28 112.9 3154 0 0.1 1 0 3.8 40 0 1.3 
29 0.4 12 5 1.3 12 5 2.7 12 5 0.9 6,2,4   2,1,2 
30 72.7 2450 9 4.2 21 9 8.4 60 9 1.4 12,0,26,14,8 2,0,2,1,4 
31 600.0 9224 — 0.2 1 0 34.8 389 0 1.9 
32 600.0 9061 — 0.1 1 0 69.2 837 0 1.9 
33 9.8 342 0 0.1 1 0 2.2 13 0 1.1 
34 161.0 3667 10 1.6 12 5 6.1 54 5 1.2 48,2,4  2,1,2 
35 1.6 54 5 0.9 12 5 3.5 24 5 0.8 6,0,9,5,4 1,0,1,1,2 
36 0.9 16 7 3.1 16 7 4.3 18 7 1.0 4,0,6,2,6 1,0,2,1,3 
37 2.0 48 8 4.9 18 8 5.8 22 8 2.1 2,10,4,6 0,3,2,3 
38 4.5 102 8 3.6 18 8 5.0 22 8 1.6 14,0,8  4,0,4 
39 129.7 2657 10 5.5 22 10 4.5 22 10 1.2 10,4,8  4,2,4 
40 3.6 156 0 0.0 1 0 1.8 15 0 0.8 
41 600.0 11043 — 0.1 1 0 3.7 10 0 2.0 
42 1.4 22 9 2.8 16 7 4.4 21 6 1.2 4,8,3,6 1,2,0,3 
43 600.0 8019 — 600.0 772 — 330.3 3891 0 2.1 
44 13.8 474 0 0.1 1 0 2.9 16 0 0.9 
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Prob Prodigy Prodigy + HCR Prodigy + Alpine 
Num Time Nodes Len Time Nodes Len Time Nodes Len J \CT AbNodes AbLen 

45 0.2 6 2 0.5 6 2 1.7 6 2 0.6 4,0,2   1,0,1 
46 600.0 9432 — 0.2 1 0 41.6 466 0 2.1 
47 0.6 14 6 2.1 14 6 2.6 14 5 0.8 4,4,2,4 1,1,1,2 
48 0.2 6 2 0.5 6 2 2.1 6 2 0.9 4,0,2   1,0,1 
49 600.0 8472 — 0.1 1 0 107.8 1188 0 2.1 
50 103.1 3891 0 0.1 1 0 1.9 6 0 1.1 
51 351.5 6702 13 12.0 31 14 15.0 115 13 2.3 8,69,26,12 2,4,1,6 
52 0.2 8 3 0.6 8 3 1.9 10 3 0.8 2,4,2,2 0,1,1,1 
53 600.0 8957 — 140.5 168 21 8.4 44 14 2.1 6,20,3,15 2,5,0,7 
54 3.8 86 13 11.6 30 13 18.4 192 13 2.0 6,0,100,74,12 1,0,4,3,5 
55 14.3 414 6 2.2 14 6 3.7 20 6 1.1 14,0,6  3,0,3 
56 600.0 8945 — 0.1 1 0 16.0 159 0 2.2 
57 1.4 15 6 1.9 15 6 3.6 17 6 0.9 6,0,4,0,7 2,0,1,0,3 
58 600.0 13447 — 15.8 31 14 15.1 120 14 2.2 14,16,49,27,14 2,1,3,2,6 
59 0.4 10 4 1.0 10 4 2.3 12 4 0.8 4,4,0,4 1,1,0,2 
60 36.3 1421 0 0.1 1 0 3.1 7 0 1.8 
61 600.0 12675 — 0.1 1 0 6.0 67 0 1.3 
62 0.5 12 5 1.4 12 5 2.3 12 4 0.8 4,4,0,4 1,1,0,2 
63 0.9 14 6 2.0 14 6 3.4 16 6 0.9 4,0,6,0,6 1,0,2,0,3 
64 4.8 107 7 2.5 16 7 3.7 20 7 1.1 12,2,6   3,1,3 
65 0.9 37 0 0.1 1 0 1.2 2 0 0.8 
66 176.0 3524 9 5.1 20 9 5.8 30 9 1.8 20,2,8  4,1,4 
67 0.4 6 2 0.4 6 2 2.2 8 2 0.8 4,0,2,0,2 1,0,0,0,1 
68 600.0 10374 — 0.1 1 0 246.1 2713 0 2.3 
69 600.0 9138 — 12.7 29 13 8.4 53 12 1.9 38,4,11   5,2,5 
70 0.9 10 4 1.0 10 4 2.7 12 4 0.8 4,0,4,0,4 1,0,1,0,2 
71 6.5 99 17 15.0 32 15 12.8 64 15 2.5 8,14,18,12,12 2,2,2,3,6 
72 0.8 16 7 3.6 16 7 4.2 18 7 1.2 2,0,8,2,6 0,0,3,1,3 
73 3.5 34 14 194.5 198 23 6.7 29 10 1.6 6,0,11,0,12 2,0,3,0,5 
74 0.8 16 7 1.7 16 7 3.6 18 7 1.0 4,0,6,2,6 1,0,2,1,3 
75 0.5 12 5 1.4 12 5 2.8 12 5 0.9 6,2,4   2,1,2 
76 125.5 2702 10 4.1 22 10 5.6 40 10 1.0 6,8,18,8 1,1,4,4 
77 1.1 21 9 5.0 21 9 4.4 21 9 1.1 11,2,8  4,1,4 
78 600.0 12547 — 0.1 1 0 8.2 104 0 1.8 
79 7.3 153 14 10.9 31 14 6.4 29 11 1.9 16,2,11   5,1,5 
80 600.0 15201 — 10.8 32 15 11.7 100 15 1.7 6,8,45,29,12 1,1,4,3,6 
81 600.0 12475 — 0.1 1 0 5.6 44 0 1.8 
82 121.3 3749 14 8.5 29 13 15.1 97 12 2.1 8,20,34,25,10 2,2,1,2,5 
83 1.6 15 6 2.8 15 6 4.9 19 6 1.4 6,4,2,0,7 2,1,0,0,3 
84 600.0 12795 — 0.1 1 0 71.2 779 0 2.2 
85 600.0 7636 — 0.1 1 0 122.3 1413 0 2.3 
86 1.4 19 8 4.6 19 8 4.7 21 8 1.3 4,0,8,0,9 1,0,3,0,4 
87 1.4 38 0 0.1 1 0 3.2 7 0 1.7 
88 3.2 27 12 10.7 24 10 7.1 26 10 2.2 6,0,8,0,12 2,0,3,0,5 
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Prob ] Prodigy Prodigy + HCR Prodigy + Alpine 
Num Time Nodes ^en Time Nodes Jen Time Nodes Len J (VCT AbNodes AbLen 

89 9.1 184 9 2.9 16 7 4.6 23 6 1.3 4,10,3,6 1,2,0,3 
90 600.0 11870 — 0.2 1 0 5.1 9 0 2.9 
91 6.3 45 19 21.8 39 17 11.9 57 15 2.4 8,4,20,8,17 3,1,3,1,7 
92 600.0 12545 — 0.2 1 0 346.1 4960 0 3.8 
93 600.0 10993 — 0.2 1 0 189.6 1971 0 3.0 
94 1.1 19 8 0.6 6 2 3.1 19 8 0.7 4,8,7 1,4,3 
95 600.0 7299 — 22.4 36 17 26.1 223 17 2.8 6,198,2,17 2,6,1,8 
96 7.3 169 18 28.1 43 18 21.6 190 16 1.4 6,26,142,16 1,2,6,7 
97 600.0 13117 — 59.4 48 23 600.0 7796 — 3.6 
98 4.7 35 15 18.1 34 16 11.6 49 15 2.6 4,8,16,5,16 1,3,3,1,7 
99 3.3 37 17 14.5 33 15 8.1 35 15 2.1 4,12,6,13 1,5,3,6 
100 1.9 16 7 3.8 16 7 5.2 18 7 1.5 4,6,2,6 1,2,1,3 
101 1.1 19 8 5.2 19 8 3.8 19 8 0.6 4,8,7 1,4,3 
102 0.1 2 0 0.1 1 0 0.8 2 0 0.5 
103 0.3 8 3 0.6 8 3 1.6 8 3 0.5 4,2,2 1,1,1 
104 0.5 6 2 0.4 6 2 1.6 6 2 0.5 4,0,2 1,0,1 
105 0.2 8 3 0.5 8 3 1.5 8 3 0.5 4,2,2 1,1,1 
106 0.7 15 6 2.5 15 6 3.4 15 6 0.6 4,4,7 1,2,3 
107 0.4 6 2 0.4 6 2 1.5 6 2 0.5 4,0,2 1,0,1 
108 0.4 6 2 0.4 6 2 1.5 6 2 0.5 4,0,2 1,0,1 
109 0.4 6 2 0.4 6 2 1.6 6 2 0.5 4,0,2 1,0,1 
110 0.9 19 8 4.3 19 8 3.1 19 8 0.6 4,8,7 1,4,3 
111 0.2 6 2 0.4 6 2 1.2 6 2 0.4 4,0,2 1,0,1 
112 0.4 6 2 0.4 6 2 1.6 6 2 0.5 4,0,2 1,0,1 
113 0.9 19 8 3.3 19 8 3.1 19 8 0.6 4,8,7 1,4,3 
114 0.2 6 2 0.4 6 2 1.5 6 2 0.6 4,0,2 1,0,1 
115 0.2 6 2 0.4 6 2 2.1 6 2 0.6 4,0,2 1,0,1 
116 0.2 6 2 0.4 6 2 1.2 6 2 0.4 4,0,2 1,0,1 
117 1.0 19 8 0.6 6 2 2.8 15 6 0.6 4,4,7 1,2,3 
118 0.4 6 2 0.4 6 2 1.5 6 2 0.5 4,0,2 1,0,1 
119 0.1 2 0 0.1 1 0 0.8 2 0 0.5 
120 0.3 8 3 0.5 8 3 1.6 8 3 0.5 4,2,2 1,1,1 
121 0.9 19 8 3.9 19 8 2.8 15 6 0.6 4,4,7 1,2,3 
122 0.9 19 8 4.1 19 8 3.1 19 8 0.6 4,8,7 1,4,3 
123 0.4 6 2 0.4 6 2 1.5 6 2 0.5 4,0,2 1,0,1 
124 0.2 6 2 0.4 6 2 1.2 6 2 0.4 4,0,2 1,0,1 
125 0.4 6 2 0.4 6 2 1.6 6 2 0.5 4,0,2 1,0,1 
126 2.8 82 0 0.1 1 0 2.1 15 0 0.8 
127 0.7 10 4 1.1 10 4 3.5 12 4 0.8 4,4,0,4 1,1,0,2 
128 0.6 10 4 1.1 10 4 2.7 10 4 0.8 6,0,4 2,0,2 
129 0.5 12 5 1.0 12 5 2.6 14 5 0.7 4,4,2,4 1,1,1,2 
130 1.1 23 10 5.3 23 10 5.1 23 10 0.9 10,4,9 4,2,4 
131 0.7 15 6 1.9 15 6 2.7 15 6 0.7 6,4,5 2,2,2 
132 128.4 2837 9 1.2 10 4 3.9 10 4 0.8 6,0,4 2,0,2 
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Prob Prodigy Prodigy + HCR Prodigy + Alpine 
Num Time Nodes Len Time Nodes Len Time Nodes Len ACT AbNodes AbLen 

133 1.1 16 6 1.5 12 5 3.4 15 4 0.8 4,0,4,3,4 1,0,1,0,2 
134 0.5 10 4 1.1 10 4 2.1 10 4 0.7 6,0,4  2,0,2 
135 0.8 10 4 1.0 10 4 2.8 12 4 0.7 4,0,4,0,4 1,0,1,0,2 
136 0.6 10 4 1.1 10 4 2.7 10 4 0.8 6,0,4  2,0,2 
137 1.0 12 5 1.3 12 5 3.0 14 5 0.8 4,0,4,2,4 1,0,1,1,2 
138 0.8 10 4 1.0 10 4 2.7 12 4 0.7 4,0,4,0,4 1,0,1,0,2 
139 0.6 14 6 1.4 14 6 2.9 16 6 0.8 4,4,4,4 1,1,2,2 
140 0.8 15 6 2.7 15 6 4.5 15 6 1.0 8,0,7  3,0,3 
141 0.6 14 6 1.3 14 6 2.9 16 6 0.8 4,4,4,4 1,1,2,2 
142 1.1 12 5 1.4 12 5 3.0 14 5 0.8 4,4,2,4 1,1,1,2 
143 1.2 11 4 1.2 11 4 2.6 11 4 0.8 6,0,5  2,0,2 
144 1.0 10 4 1.0 10 4 2.8 12 4 0.7 4,0,4,0,4 1,0,1,0,2 
145 600.0 12243 — 600.0 1949 — 3.6 34 0 0.8 
146 0.4 10 4 1.2 10 4 2.7 12 4 0.8 4,4,0,4 1,1,0,2 
147 0.9 10 4 1.2 10 4 3.2 12 4 0.8 4,0,4,0,4 1,0,1,0,2 
148 0.5 10 4 0.9 10 4 2.6 12 4 0.7 4,4,0,4 1,1,0,2 
149 0.8 10 4 1.0 10 4 2.8 12 4 0.7 4,0,4,0,4 1,0,1,0,2 
150 0.7 12 5 1.4 12 5 2.3 12 5 0.6 6,2,4  2,1,2 
151 1.1 21 9 5.9 21 9 3.7 17 7 1.1 8,2,7  3,1,3 
152 4.1 74 6 2.2 14 6 5.0 16 6 1.3 4,6,0,6 1,2,0,3 
153 2.1 17 7 2.9 17 7 4.5 19 7 1.1 6,0,4,2,7 2,0,1,1,3 
154 4.2 75 6 2.4 15 6 5.2 17 6 1.2 6,4,0,7 2,1,0,3 
155 0.9 18 8 2.0 14 6 3.8 20 8 1.0 4,8,0,8 1,3,0,4 
156 1.2 14 6 2.4 14 6 4.1 18 6 1.1 4,4,4,0,6 1,1,1,0,3 
157 1.0 18 8 2.9 18 8 3.8 20 8 1.0 4,6,4,6 1,2,2,3 
158 60.2 1722 0 0.1 1 0 3.3 28 0 1.1 
159 1.0 16 7 2.3 16 7 4.4 18 7 1.0 6,4,2,6 2,1,1,3 
160 0.8 14 6 2.3 14 6 3.6 16 6 1.0 4,6,0,6 1,2,0,3 
161 1.5 15 6 2.5 15 6 4.2 17 6 1.1 6,0,4,0,7 2,0,1,0,3 
162 1.1 16 7 3.3 16 7 4.0 16 7 1.2 8,2,6  3,1,3 
163 1.9 22 10 1.8 14 6 3.9 18 6 1.0 4,4,4,0,6 1,1,1,0,3 
164 1.8 22 9 2.9 16 7 4.2 21 6 1.0 4,0,8,3,6 1,0,2,0,3 
165 600.0 13813 — 0.1 1 0 8.1 90 0 1.3 
166 2.1 29 13 2.7 16 7 5.3 16 7 1.3 8,2,6  3,1,3 
167 0.7 14 6 2.1 14 6 3.4 16 6 1.0 4,6,0,6 1,2,0,3 
168 600.0 11187 — 600.0 919 — 6.4 36 13 1.1 22,2,12  6,1,6 
169 1.2 16 6 3.0 16 7 4.2 21 6 1.0 4,0,8,3,6 1,0,2,0,3 
170 3.7 83 9 2.1 16 7 5.6 34 7 1.1 6,8,9,5,6 1,1,1,1,3 
171 1.8 28 13 10.3 28 13 5.7 26 12 1.2 12,4,10  5,2,5 
172 130.6 5092 0 0.1 1 0 1.9 4 0 1.1 
173 1.1 18 8 3.8 18 8 3.6 18 7 1.0 4,6,2,6 1,2,1,3 
174 600.0 10297 — 6.5 22 10 5.7 24 10 1.4 4,6,4,10 1,2,2,5 
175 1.8 15 6 2.7 15 6 4.4 17 6 1.1 6,0,4,0,7 2,0,1,0,3 
176 1.7 25 11 5.3 20 9 5.4 22 9 1.3 4,8,2,8 1,3,1,4 
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Prob Prodigy Prodigy + HCR Prodigy + Alpine 

Num Time Nodes Len Time N( ades Len Time Nodes Len ACT AbNodes AbLen 

177 2.4   18 8 4.6 18 8 5.5 20 8 1.4 4,8,0,8 1,3,0,4 

178 2.1   20 9 5.0 20 9 6.3 24 9 1.5 4,4,6,2,8 1,1,2,1,4 

179 600.0 13373 — 0.1 1 0 34.9 443 0 1.5 
180 2.7   24 10 5.8 21 9 6.6 26 8 1.3 6,0,8,3,9 2,0,2,0,4 

181 164.7 5150 9 5.8 20 9 7.0 39 9 1.4 6,8,12,5,8 1,1,2,1,4 

182 1.2   19 8 5.1 19 8 4.6 21 8 1.4 4,8,0,9 1,3,0,4 

183 12.0  227 15 . 7.2 23 10 6.2 23 10 1.6 10,4,9  4,2,4 

184 3.2   39 18 11.2 26 12 8.6 24 11 1.7 12,2,10  5,1,5 

185 4.0   76 10 7.8 22 10 7.2 41 10 1.6 6,8,12,7,8 1,1,2,2,4 

186 1.7   25 11 6.2 25 11 5.1 27 11 1.4 6,6,6,9 2,2,3,4 

187 48.2 1363 15 11.9 33 15 20.7 176 15 1.7 6,98,60,12 1,5,3,6 

188 1.2   20 9 4.5 20 9 4.8 22 9 1.5 4,8,2,8 1,3,1,4 

189 2.9   21 9 4.6 21 9 5.4 23 9 1.3 6,0,6,2,9 2,0,2,1,4 

190 1.4   18 8 3.8 18 8 5.1 22 8 1.4 4,4,6,0,8 1,1,2,0,4 

191 350.4 7170 16 16.6 33 14 7.8 37 16 1.6 17,4,16  7,2,7 

192 600.0 13802 — 0.1 1 0 4.2 40 0 1.4 
193 2.6   23 10 6.6 23 10 5.9 25 10 1.5 6,0,6,4,9 2,0,2,2,4 

194 600.0 12760 — 11.9 29 13 6.5 26 12 1.5 14,0,12  6,0,6 

195 1.6   20 9 5.3 20 9 4.9 18 8 1.6 10,0,8  4,0,4 

196 2.5   31 14 10.9 26 12 7.0 31 14 1.5 16,0,15  7,0,7 

197 3.3   30 13 5.0 20 9 6.2 22 9 1.8 4,8,2,8 1,3,1,4 

198 1.7   18 8 3.9 18 8 5.1 22 8 1.4 4,4,6,0,8 1,1,2,0,4 

199 2.9   24 11 3.9 21 9 6.6 23 9 1.3 6,0,6,2,9 2,0,2,1,4 

200 2.1   36 15 20.5 36 15 7.6 36 15 1.6 17,6,13  6,3,6 

201 13.0  308 19 17.3 33 15 17.2 123 15 1.8 8,0,60,43,12 2,0,4,3,6 

202 600.0 14277 — 0.1 1 0 13.6 172 0 1.8 
203 61.8 1173 23 600.0 405 — 6.4 23 10 1.7 12,0,11   5,0,5 

204 600.0 10071 — 7.0 25 11 7.1 32 11 1.8 6,13,2,11 2,3,1,5 

205 3.9   28 12 8.9 28 12 8.0 32 12 1.9 6,4,6,4,12 2,1,2,2,5 

206 600.0 10337 — 600.0 494 — 600.0 6928 — 2.1 
207 3.2   27 12 9.4 23 10 7.9 27 10 1.9 6,4,6,0,11 2,1,2,0,5 

208 2.6   37 17 27.1 37 17 9.2 37 17 2.1 17,6,14  7,3,7 

209 2.8   27 11 9.9 27 12 8.1 38 11 1.8 6,4,12,5,11 2,1,2,1,5 

210 600.0 9205 — 600.0 649 — 70.2 785 0 2.2 
211 2.6   27 12 8.7 27 12 6.5 31 12 1.8 4,4,8,4,11 1,1,3,2,5 

212 3.3   27 12 15.5 27 12 7.7 29 12 1.7 4,0,10,4,11 1,0,4,2,5 

213 2.1   29 13 10.2 24 11 6.5 31 13 1.8 6,10,2,13 2,4,1,6 
214 12.6  369 17 16.6 32 15 16.0 129 15 1.9 6,8,60,43,12 1,1,4,3,6 

215 600.0 13867 — 0.1 1 0 4.9 39 0 1.7 
216 4.1   83 19 111.7 83 19 8.8 41 17 2.0 18,6,17  7,3,7 

217 2.4   26 11 7.3 26 11 5.5 28 11 1.4 6,8,2,12 2,3,1,5 

218 600.0 9850 — 0.1 1 0 35.6 401 0 2.0 
219 600.0 12472 — 6.8 24 11 17.4 143 11 1.9 6,98,29,10 1,4,1,5 

220 600.0 11590 — 25.6 36 16 1 64.5 614 16 2.0 6,456,136,16 1,6,2,7 
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Prob Prodigy Prodigy + HCR Prodigy + Alpine 
Num Time Nodes Len Time Nodes Len Time Nodes Len ACT AbNodes AbLen 
221 600.0 13515 — 0.1 1 0 7.3 67 0 1.9 
222 600.0 10365 — 600.0 755 — 106.1 1203 0 2.0 
223 600.0 9819 — 21.5 36 17 70.3 658 17 2.1 6,448,190,14 1,6,3,7 
224 4.8 34 16 15.6 30 14 7.8 36 16 1.6 4,0,14,4,14 1,0,6,2,7 
225 600.0 10396 — 600.0 509 — 12.8 65 16 1.9 4,42,3,16 1,7,0,8 
226 33.1 652 19 600.0 293 — 11.3 37 17 2.4 16,6,15   7,3,7 
227 600.0 9710 — 0.2 0 49.4 523 0 2.3 
228 600.0 10605 — 0.1 0 225.0 2847 0 2.1 
229 600.0 13842 — 0.2 0 6.4 43 0 2.3 
230 600.0 8883 — 0.2 0 600.0 6735 — 2.4 
231 600.0 16681 — 0.1 0 9.3 83 0 2.1 
232 4.2 39 17 13.9 29 13 9.2 45 12 2.2 4,12,12,3,14 1,3,2,0,6 
233 600.0 12603 — 0.2 1 0 51.1 547 0 2.3 
234 600.0 9767 — 11.6 29 13 20.0 164 13 2.3 4,145,2,13 1,5,1,6 
235 4.8 29 13 16.6 29 13 8.2 33 13 2.2 6,4,8,2,13 2,1,3,1,6 
236 26.7 487 16 15.2 30 14 46.2 412 14 2.2 6,299,95,12 1,5,2,6 
237 6.3 87 17 16.1 35 15 8.8 39 15 2.4 4,14,6,15 1,5,3,6 
238 600.0 11868 — 30.2 45 20 10.8 47 20 2.4 4,16,8,19 1,7,4,8 
239 600.0 9083 — 600.0 718 — 197.9 2167 0 2.3 
240 600.0 9374 — 30.4 41 19 72.1 700 19 2.3 12,616,56,16 2,6,3,8 
241 2.5 32 15 15.6 32 15 7.4 34 15 2.1 6,10,6,12 2,4,3,6 
242 600.0 9392 — 600.0 336 — 600.0 6802 — 2.4 
243 600.0 8774 — 600.0 424 — 272.5 3307 0 2.3 
244 600.0 12316 — 507.8 331 29 8.5 45 17 1.7 4,4,16,2,19 1,1,6,1,8 
245 600.0 11754 — 0.2 0 141.0 1790 0 2.1 
246 600.0 13099 — 0.2 0 8.3 67 0 2.2 
247 600.0 14037 — 0.2 0 104.7 1124 0 2.9 
248 600.0 10440 — 0.1 0 70.0 763 0 2.5 
249 600.0 12685 — 0.1 0 28.5 411 0 2.1 
250 319.1 5393 20 30.1 42 20 424.7 4099 20 2.5 6,3071,1006,16 1,7,4,8 
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Prob Prodigy + EBL Prodigy + Static Prodigy + Alpine + HCR 
Num Time Nodes Len Time Nodes Len Time Nodes Len ACT AbNodes AbLen 

1 1.7 19 8 3.0 19 8 2.9 19 8 0.6 4,8,7  1,4,3 
2 0.0 1 0 0.1 1 0 1.0 1 0 1.0 
3 0.4 6 2 0.5 6 2 1.5 6 2 0.5 4,0,2  1,0,1 
4 1.0 10 4 1.2 10 4 2.0 12 4 0.8 4,4,0,4 1,1,0,2 
5 1.3 15 6 2.2 15 6 2.0 15 6 0.6 4,4,7  1,2,3 
6 0.0 1 0 0.1 1 0 0.9 1 0 0.7 
7 0.4 8 3 0.6 8 3 1.8 10 3 0.7 2,4,2,2 0,1,1,1 
8 0.1 1 0 0.1 1 0 1.0 1 0 0.9 
9 0.7 10 4 1.0 10 4 2.1 10 4 0.7 6,0,4 2,0,2 

10 2.1 19 8 2.7 19 8 2.4 19 8 0.6 4,8,7  1,4,3 
11 0.0 1 0 0.1 1 0 0.6 1 0 0.5 
12 1.3 15 6 4.0 19 8 1.4 6 2 0.6 4,0,2  1,0,1 
13 0.4 8 3 0.7 8 3 1.2 8 3 0.5 4,2,2  1,1,1 
14 1.0 12 5 1.4 12 5 2.9 12 5 0.7 6,2,4 2,1,2 
15 0.4 6 2 0.5 6 2 1.3 6 2 0.6 4,0,2  1,0,1 
16 135.8 718 0 101.4 458 0 3.7 18 0 0.8 
17 1.8 16 7 1.2 10 4 3.4 16 7 1.0 8,2,6  3,1,3 
18 0.0 1 0 0.1 1 0 0.9 1 0 0.8 
19 0.0 1 0 0.1 1 0 1.5 8 0 1.0 
20 0.0 1 0 0.1 1 0 1.0 1 0 0.8 
21 0.1 1 0 0.1 1 0 1.3 1 0 1.1 
22 0.4 8 3 0.6 8 3 1.8 10 3 0.8 2,4,2,2 0,1,1,1 
23 0.3 6 2 0.4 6 2 1.0 6 2 0.5 4,0,2  1,0,1 
24 2.1 16 7 3.0 16 7 3.8 18 7 1.1 4,6,2,6 1,2,1,3 
25 0.0 1 0 0.1 1 0 1.6 8 0 1.2 
26 2.7 20 8 4.0 20 8 2.9 23 8 0.6 6,10,7  1,4,3 
27 0.8 10 4 1.4 10 4 2.1 10 4 0.9 6,0,4 2,0,2 
28 0.1 1 0 0.1 1 0 1.9 8 0 1.3 
29 1.0 12 5 2.0 12 5 2.5 12 5 0.9 6,2,4 2,1,2 
30 3.8 21 9 5.3 21 9 4.7 23 9 1.4 6,6,2,9 2,2,1,4 
31 0.2 1 0 0.2 1 0 2.7 8 0 1.9 
32 0.1 1 0 0.1 1 0 2.1 1 0 1.9 
33 0.1 1 0 0.1 1 0 1.2 1 0 1.1 
34 600.0 2578 — 7.6 24 10 3.4 12 5 1.2 6,2,4 2,1,2 
35 1.1 12 5 1.4 12 5 2.2 14 5 0.8 4,4,2,4 1,1,1,2 
36 2.2 14 6 3.4 16 7 3.9 18 7 1.0 4,6,2,6 1,2,1,3 
37 2.5 16 7 5.8 18 8 7.2 20 8 2.1 2,8,4,6 0,3,2,3 
38 23.8 102 8 5.0 18 8 5.9 18 8 1.6 10,0,8 4,0,4 
39 3.9 22 10 7.5 22 10 6.0 22 10 1.2 10,4,8 4,2,4 
40 0.0 1 0 0.1 1 0 1.1 8 0 0.8 
41 0.1 1 0 0.1 1 0 2.2 1 0 2.0 
42 2.7 14 6 4.0 16 7 4.0 18 7 1.2 4,6,2,6 1,2,1,3 
43 600.0 1024 — 600.0 741 — 88.5 187 0 2.1 
44 0.1 1 0 0.1 1 0 1.0 1 0 0.9 
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Prob Prodigy + EBL Prodigy + Static Prodigy + Alpine + HCR 
Num Time Nodes '. ^en Time Nodes '. jen Time Nodes '. Len ACT AbNodes AbLen 

45 0.4 6 2 0.6 6 2 1.3 6 2 0.6 4,0,2  1,0,1 
46 0.1 1 0 0.1 1 0 2.4 1 0 2.1 
47 1.3 12 5 2.3 14 6 2.4 12 5 0.8 6,2,4  2,1,2 
48 0.4 6 2 0.6 6 2 1.7 6 2 0.9 4,0,2  1,0,1 
49 0.1 1 0 0.1 1 0 2.3 1 0 2.1 
50 0.1 1 0 0.1 1 0 1.2 1 0 1.1 
51 9.7 29 13 17.0 31 14 9.6 33 14 2.3 6,10,4,13 2,4,2,6 
52 0.6 8 3 0.6 8 3 2.3 10 3 0.8 2,4,2,2 0,1,1,1 
53 10.9 30 14 13.1 26 12 8.4 32 12 2.1 6,13,0,13 2,4,0,6 
54 9.1 30 13 15.5 30 13 10.0 32 13 2.0 4,10,6,12 1,4,3,5 
55 51.0 414 6 3.0 14 6 3.5 14 6 1.1 8,0,6  3,0,3 
56 0.1 1 0 0.1 1 0 2.8 8 0 2.2 
57 2.5 15 6 3.6 15 6 2.9 17 6 0.9 6,4,0,7 2,1,0,3 
58 11.4 31 14 17.1 31 14 12.3 33 14 2.2 6,10,4,13 2,4,2,6 
59 0.9 10 4 1.3 10 4 2.2 10 4 0.8 6,0,4  2,0,2 
60 0.1 1 0 0.1 1 0 2.1 4 0 1.8 
61 0.1 1 0 0.1 1 0 2.4 21 0 1.3 
62 1.0 10 4 1.7 12 5 2.2 10 4 0.8 6,0,4  2,0,2 
63 2.0 14 6 2.9 14 6 3.4 16 6 0.9 4,6,0,6 1,2,0,3 
64 7.7 51 7 3.2 14 6 3.7 16 7 1.1 8,2,6  3,1,3 
65 0.0 1 0 0.1 1 0 0.9 1 0 0.8 
66 600.0 2619 — 7.2 20 9 5.6 20 9 1.8 10,2,8 4,1,4 
67 0.6 6 2 0.7 6 2 1.6 8 2 0.8 4,2,0,2 1,0,0,1 
68 0.1 1 0 0.2 1 0 3.2 8 0 2.3 
69 600.0 1390 — 15.7 29 13 10.1 27 12 1.9 12,4,11  5,2,5 
70 1.3 10 4 1.7 10 4 2.2 12 4 0.8 4,4,0,4 1,1,0,2 
71 11.7 30 14 18.6 32 15 12.7 35 15 2.5 6,10,6,13 2,4,3,6 
72 2.0 14 6 3.5 16 7 5.9 18 7 1.2 2,8,2,6 0,3,1,3 
73 8.3 24 10 8.6 24 10 10.5 29 10 1.6 6,11,0,12 2,3,0,5 
74 1.9 16 7 2.6 16 7 3.2 18 7 1.0 4,6,2,6 1,2,1,3 
75 1.2 12 5 2.2 12 5 2.4 12 5 0.9 6,2,4  2,1,2 
76 4.2 22 10 9.9 49 10 3.7 24 10 1.0 4,4,8,8 1,1,4,4 
77 3.8 21 9 6.5 21 9 4.5 21 9 1.1 11,2,8 4,1,4 
78 0.1 1 0 0.1 1 0 2.4 8 0 1.8 
79 35.1 117 11 10.0 25 11 9.0 25 11 1.9 12,2,11  5,1,5 
80 6.5 26 12 10.0 26 12 11.2 34 15 1.7 4,12,6,12 1,5,3,6 
81 0.1 1 0 0.1 1 0 2.3 8 0 1.8 
82 10.6 33 15 11.9 27 12 7.4 31 13 2.1 6,8,6,11 2,3,3,5 
83 3.2 15 6 3.7 14 6 3.7 17 6 1.4 6,4,0,7 2,1,0,3 
84 0.1 1 0 0.2 1 0 3.5 8 0 2.2 
85 0.1 1 0 0.1 1 0 3.0 8 0 2.3 
86 3.5 19 8 4.3 19 8 5.6 21 8 1.3 4,8,0,9 1,3,0,4 
87 0.1 1 0 0.1 1 0 2.2 4 0 1.7 
88 8.4 23 10 10.4 24 10 9.4 26 10 2.2 6,8,0,12 2,3,0,5 
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Prob Prodigy + EBL Prodigy + Static Prodigy + Alpine + HCR 
Num Time Nodes _,en Time Nodes ..en Time Nodes Len ACT AbNodes AbLen 

89 10.2 62 6 4.2 16 7 4.1 18 7 1.3 4,6,2,6 1,2,1,3 
90 0.1 1 0 0.1 1 0 3.6 4 0 2.9 
91 19.1 37 16 26.8 37 17 12.6 41 17 2.4 8,10,6,17 3,4,3,7 
92 0.1 1 0 0.2 1 0 4.7 8 0 3.8 
93 0.1 1 0 0.2 1 0 4.8 21 0 3.0 
94 2.4 19 8 3.0 15 6 1.5 6 2 0.7 4,0,2 1,0,1 
95 600.0 540 — 37.1 43 20 21.5 39 17 2.8 6,14,2,17 2,6,1,8 
96 24.8 43 18 57.9 70 18 6.9 38 16 1.4 4,6,12,16 1,2,6,7 
97 42.9 51 24 58.1 47 22 41.3 52 23 3.6 6,18,6,22 2,8,3,10 
98 16.9 34 16 25.3 34 16 19.3 36 16 2.6 4,14,4,14 1,6,2,7 
99 12.8 33 15 17.4 31 13 9.0 35 15 2.1 4,12,6,13 1,5,3,6 
100 3.5 14 6 5.3 16 7 5.6 18 7 1.5 4,6,2,6 1,2,1,3 
101 3.5 19 8 4.1 19 8 3.4 19 8 0.6 4,8,7 1,4,3 
102 0.0 1 0 0.1 1 0 0.7 1 0 0.5 
103 0.6 8 3 0.8 8 3 1.5 8 3 0.5 4,2,2 1,1,1 
104 0.7 6 2 0.8 6 2 1.2 6 2 0.5 4,0,2 1,0,1 
105 0.5 8 3 0.6 8 3 1.4 8 3 0.5 4,2,2 1,1,1 
106 2.2 15 6 3.2 15 6 2.8 15 6 0.6 4,4,7 1,2,3 
107 0.7 6 2 0.8 6 2 1.2 6 2 0.5 4,0,2 1,0,1 
108 0.7 6 2 0.8 6 2 1.2 6 2 0.5 4,0,2 1,0,1 
109 0.7 6 2 0.8 6 2 1.2 6 2 0.5 4,0,2 1,0,1 
110 3.3 19 8 2.6 15 6 2.8 19 8 0.6 4,8,7 1,4,3 
111 0.3 6 2 0.5 6 2 1.1 6 2 0.4 4,0,2 1,0,1 
112 0.7 6 2 0.8 6 2 1.2 6 2 0.5 4,0,2 1,0,1 
113 3.1 19 8 4.5 19 8 2.8 19 8 0.6 4,8,7 1,4,3 
114 0.4 6 2 0.5 6 2 1.2 6 2 0.6 4,0,2 1,0,1 
115 0.3 6 2 0.5 6 2 1.8 6 2 0.6 4,0,2 1,0,1 
116 0.3 6 2 0.5 6 2 1.1 6 2 0.4 4,0,2 1,0,1 
117 2.5 19 8 4.7 19 8 1.6 6 2 0.6 4,0,2 1,0,1 
118 0.7 6 2 0.8 6 2 1.2 6 2 0.5 4,0,2 1,0,1 
119 0.1 1 0 0.1 1 0 0.6 1 0 0.5 
120 0.5 8 3 0.7 8 3 1.4 8 3 0.5 4,2,2 1,1,1 
121 3.3 19 8 5.1 19 8 2.5 15 6 0.6 4,4,7 1,2,3 
122 3.3 19 8 5.2 19 8 2.8 19 8 0.6 4,8,7 1,4,3 
123 0.7 6 2 0.8 6 2 1.3 6 2 0.5 4,0,2 1,0,1 
124 0.4 6 2 0.5 6 2 1.2 6 2 0.4 4,0,2 1,0,1 
125 0.7 6 2 0.8 6 2 1.2 6 2 0.5 4,0,2 1,0,1 
126 0.1 1 0 0.2 1 0 1.4 8 0 0.8 
127 1.5 10 4 1.8 10 4 2.7 12 4 0.8 4,4,0,4 1,1,0,2 
128 1.2 10 4 1.7 10 4 2.4 10 4 0.8 6,0,4 2,0,2 
129 1.1 12 5 1.6 12 5 2.2 12 5 0.7 6,2,4 2,1,2 
130 4.1 23 10 6.8 23 10 4.9 23 10 0.9 10,4,9 4,2,4 
131 1.8 15 6 3.1 15 6 2.6 15 6 0.7 6,4,5 2,2,2 
132 600.0 2635 — 5.7 20 9 3.1 10 4 0.8 6,0,4 2,0,2 
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Prob Prodigy + EBL Prodigy + Static Prodigy + Alpine + HCR 
Num Time Nodes L,en Time Nodes l,en Time Nodes jen i A.CT AbNodes AbLen 

133 2.4 10 4 2.2 12 5 2.7 14 5 0.8 4,4,2,4 1,1,1,2 
134 1.0 10 4 1.3 10 4 2.2 10 4 0.7 6,0,4  2,0,2 
135 1.4 10 4 1.7 10 4 2.2 12 4 0.7 4,4,0,4 1,1,0,2 
136 1.3 10 4 1.7 10 4 2.3 10 4 0.8 6,0,4  2,0,2 
137 1.8 12 5 2.4 12 5 2.4 14 5 0.8 4,4,2,4 1,1,1,2 
138 1.4 10 4 1.6 10 4 2.2 12 4 0.7 4,4,0,4 1,1,0,2 
139 1.6 14 6 2.5 14 6 2.5 14 6 0.8 6,4,4  2,2,2 
140 3.0 15 6 7.0 22 10 3.6 15 6 1.0 8,0,7  3,0,3 
141 1.6 14 6 2.5 14 6 2.5 14 6 0.8 6,4,4  2,2,2 
142 2.0 12 5 2.6 12 5 2.5 14 5 0.8 4,4,2,4 1,1,1,2 
143 2.0 11 4 2.4 11 4 2.0 11 4 0.8 6,0,5  2,0,2 
144 1.6 10 4 2.0 10 4 2.2 12 4 0.7 4,4,0,4 1,1,0,2 
145 600.0 2504 — 600.0 1658 — 4.4 21 0 0.8 
146 1.0 10 4 1.4 10 4 2.3 10 4 0.8 6,0,4  2,0,2 
147 1.6 10 4 2.0 10 4 2.3 12 4 0.8 4,4,0,4 1,1,0,2 
148 1.1 10 4 1.4 10 4 2.1 10 4 0.7 6,0,4  2,0,2 
149 1.4 10 4 1.7 10 4 2.2 12 4 0.7 4,4,0,4 1,1,0,2 
150 1.4 12 5 2.0 12 5 2.2 12 5 0.6 6,2,4  2,1,2 
151 2.7 17 7 6.0 21 9 4.6 17 7 1.1 8,2,7  3,1,3 
152 12.9 74 6 4.2 14 6 3.5 16 6 1.3 4,6,0,6 1,2,0,3 
153 4.0 17 7 6.1 17 7 3.5 19 7 1.1 6,4,2,7 2,1,1,3 
154 12.6 75 6 4.6 15 6 3.9 17 6 1.2 6,4,0,7 2,1,0,3 
155 1.9 14 6 2.8 14 6 3.0 14 6 1.0 8,0,6  3,0,3 
156 2.6 14 6 3.5 14 6 3.9 16 6 1.1 4,6,0,6 1,2,0,3 
157 3.1 18 8 4.8 18 8 3.9 18 8 1.0 8,4,6  3,2,3 
158 0.1 1 0 0.1 1 0 1.7 8 0 1.1 
159 2.4 16 7 3.6 16 7 3.9 16 7 1.0 8,2,6  3,1,3 
160 2.2 14 6 3.1 14 6 4.2 14 6 1.0 8,0,6  3,0,3 
161 3.9 15 6 3.6 14 6 3.2 17 6 1.1 6,4,0,7 2,1,0,3 
162 4.6 16 7 4.6 16 7 4.3 16 7 1.2 8,2,6  3,1,3 
163 2.5 14 6 3.3 14 6 3.2 16 6 1.0 4,6,0,6 1,2,0,3 
164 3.4 14 6 3.8 16 7 3.9 18 7 1.0 4,6,2,6 1,2,1,3 
165 0.1 1 0 0.1 1 0 1.4 1 0 1.3 
166 7.0 29 13 12.7 29 13 4.1 16 7 1.3 8,2,6  3,1,3 
167 2.1 14 6 2.9 14 6 3.4 14 6 1.0 8,0,6 3,0,3 
168 600.0 1291 — 8.9 24 11 10.5 34 11 1.1 22,2,10  5,1,5 
169 3.0 14 6 3.8 16 7 3.8 18 7 1.0 4,6,2,6 1,2,1,3 
170 3.0 16 7 4.0 16 7 3.5 18 7 1.1 4,6,2,6 1,2,1,3 
171 7.7 26 12 10.0 26 11 6.7 26 12 1.2 12,4,10  5,2,5 
172 0.1 1 0 0.1 1 0 1.3 1 0 1.1 
173 2.6 16 7 4.6 18 8 3.9 16 7 1.0 8,2,6  3,1,3 
174 6.0 22 10 11.4 24 11 4.8 24 10 1.4 4,6,4,10 1,2,2,5 
175 3.4 15 6 4.2 15 6 3.3 17 6 1.1 6,4,0,7 2,1,0,3 
176 5.9 25 11 5.7 19 8 6.4 20 9 1.3 10,2,8 4,1,4 
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Prob Prodigy + EBL Prodigy + Static Prodigy + Alpine + HCR 
Num Time Nodes '. jen Time Nodes '. jen Time Nodes Len ACT AbNodes AbLen 

177 5.2 18 8 7.0 18 8 5.7 20 8 1.4  4,8,0,8 1,3,0,4 
178 5.0 20 9 7.2 20 9 6.4 22 9 1.5  4,8,2,8 1,3,1,4 
179 0.1 1 0 0.1 1 0 2.2 8 0 1.5 
180 5.8 19 8 6.9 20 9 5.1 .23 9 1.3  6,6,2,9 2,2,1,4 
181 5.6 20 9 7.1 20 9 6.2 22 9 1.4  4,8,2,8 1,3,1,4 
182 4.0 19 8 5.5 19 8 5.7 19 8 1.4  10,0,9 4,0,4 
183 122.4 228 15 19.1 33 15 7.3 23 10 1.6  10,4,9 4,2,4 
184 16.4 37 17 45.6 48 21 8.6 24 11 1.7  12,2,10  5,1,5 
185 5.2 21 9 8.9 22 10 8.0 24 10 1.6  4,8,4,8 1,3,2,4 
186 6.0 25 11 9.9 25 11 5.7 25 11 1.4  10,6,9 4,3,4 
187 11.0 33 15 32.1 63 15 8.9 35 15 1.7 4,13,6,12 1,5,3,6 
188 3.7 20 9 5.6 20 9 6.2 20 9 1.5  10,2,8 4,1,4 
189 6.3 21 9 8.7 21 9 4.6 23 9 1.3  6,6,2,9 2,2,1,4 
190 3.8 18 8 5.1 18 8 5.8 20 8 1.4  4,8,0,8 1,3,0,4 
191 12.0 33 14 19.5 33 14 9.2 33 14 1.6  15,4,14 6,2,6 
192 0.1 1 0 0.1 1 0 1.8 8 0 1.4 
193 5.5 21 9 8.9 23 10 5.3 25 10 1.5  6,6,4,9 2,2,2,4 
194 600.0 1174 — 15.3 30 14 9.1 27 12 1.5  14,0,13  6,0,6 
195 4.0 18 8 6.5 20 9 6.0 18 8 1.6  10,0,8 4,0,4 
196 7.9 26 12 13.0 28 13 8.7 26 12 1.5  14,0,12  6,0,6 
197 11.1 30 13 19.1 32 14 5.3 22 9 1.8  4,8,2,8 1,3,1,4 
198 4.2 18 8 5.7 18 8 5.4 20 8 1.4  4,8,0,8 1,3,0,4 
199 5.9 21 9 7.0 21 9 4.6 23 9 1.3  6,6,2,9 2,2,1,4 
200 12.2 36 15 19.7 36 15 12.9 36 15 1.6  17,6,13 6,3,6 
201 9.8 25 11 14.5 26 12 11.6 35 15 1.8 6,10,6,13 2,4,3,6 
202 0.1 1 0 0.1 1 0 3.3 21 0 1.8 
203 6.7 23 10 9.8 23 10 9.2 23 10 1.7  12,0,11  5,0,5 
204 600.0 1903 — 11.9 25 11 6.8 27 11 1.8 6,8,2,11 2,3,1,5 
205 10.2 28 12 15.5 28 12 6.4 30 12 1.9 6,8,4,12 2,3,2,5 
206 600.0 592 — 600.0 659 — 600.0 607 — 2.1 
207 8.1 23 10 10.5 23 10 8.7 25 10 1.9 6,8,0,11 2,3,0,5 
208 17.3 37 17 27.7 37 17 18.5 37 17 2.1  17,6,14  7,3,7 
209 9.4 27 12 13.0 26 12 8.1 29 12 1.8 6,8,4,11 2,3,2,5 
210 600.0 743 — 600.0 595 — 46.5 68 0 2.2 
211 8.3 27 12 12.5 27 12 8.5 29 12 1.8 4,10,4,11 1,4,2,5 
212 8.4 25 10 14.2 27 12 12.8 29 12 1.7 4,10,4,11 1,4,2,5 
213 6.7 24 11 10.2 24 11 8.4 24 11 1.8  12,2,10 5,1,5 
214 8.1 24 11 13.2 26 12 14.7 34 15 1.9 4,12,6,12 1,5,3,6 
215 0.1 1 0 0.2 1 0 2.0 1 0 1.7 
216 41.8 81 17 32.1 41 19 18.3 41 17 2.0  18,6,17 7,3,7 
217 8.0 26 11 11.7 26 11 8.1 26 11 1.4  12,2,12 5,1,5 
218 0.1 1 0 0.1 1 0 2.6 8 0 2.0 
219 600.0 1758 — 11.9 24 11 7.2 26 11 1.9 4,10,2,10 1,4,1,5 
220 16.4 36 16 24.9 36 16 19.0 38 16 2.0 4,14,4,16 1,6,2,7 
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Prob Prodigy + EBL Prodigy + Static Prodigy + Alpine + HCR 
Num Time Nodes Len Time Nodes Len Time Nodes Len ACT AbNodes AbLen 

221 0.1 1 0 0.1 1 0 3.6 21 0 1.9 
222 600.0 436 — 600.0 516 — 39.4 74 0 2.0 
223 112.8 168 16 35.2 66 17 15.0 38 17 2.1 4,14,6,14 1,6,3,7 
224 10.5 28 13 12.5 25 11 14.6 32 14 1.6 4,12,4,12 1,5,2,6 
225 600.0 651 — 25.1 35 16 18.8 42 15 1.9 4,22,2,14 1,6,1,7 
226 600.0 709 — 39.0 37 17 15.0 33 15 2.4  14,6,13  6,3,6 
227 0.1 0 0.2 0 4.1 21 0 2.3 
228 0.1 0 0.2 0 2.7 8 0 2.1 
229 0.1 0 0.2 0 3.5 8 0 2.3 
230 0.1 0 0.1 0 3.1 8 0 2.4 
231 0.1 0 0.2 0 3.7 21 0 2.1 
232 13.2 29 13 18.3 29 13 14.4 31 13 2.2 4,12,2,13 1,5,1,6 
233 0.1 1 0 0.2 1 0 4.8 21 0 2.3 
234 600.0 698 — 34.9 40 19 10.1 31 13 2.3 4,12,2,13 1,5,1,6 
235 13.7 29 13 17.7 28 13 12.5 31 13 2.2 6,10,2,13 2,4,1,6 
236 118.5 208 16 21.4 30 14 14.0 32 14 2.2 4,12,4,12 1,5,2,6 
237 50.6 89 15 29.1 35 15 11.0 37 15 2.4 4,12,6,15 1,5,3,6 
238 600.0 517 — 46.8 45 20 17.0 47 20 2.4 4,16,8,19 1,7,4,8 
239 600.0 877 — 600.0 712 — 69.6 115 0 2.3 
240 600.0 713 — 37.9 40 19 17.3 43 19 2.3 6,14,6,17 2,6,3,8 
241 12.1 32 15 20.3 32 15 13.0 32 15 2.1  14,6,12  6,3,6 
242 600.0 307 — 600.0 439 — 600.0 374 — 2.4 
243 600.0 751 — 600.0 561 — 526.1 415 0 2.3 
244 11.6 28 12 15.6 28 12 19.2 43 17 1.7 4,18,2,19 1,7,1,8 
245 0.2 1 0 0.2 0 2.3 1 0 2.1 
246 0.1 1 0 0.1 0 4.2 21 0 2.2 
247 0.1 1 0 0.2 0 2.6 1 0 2.9 
248 0.1 1 0 0.2 0 2.9 8 0 2.5 
249 0.1 1 0 0.1 0 . 7.5 69 0 2.1 
250 22.9 40 19 70.5 72 20 20.5 44 20 2.5 4,16,8,16 1,7,4,8 



Appendix D 

STRIPS Robot Planning Domain 

This is the original STRIPS robot planning domain [Fikes and Nilsson, 1971] as it is 
encoded in PRODIGY. The only differences are that the variable arguments are typed 
and the deletes are changed into conditional deletes. The numbers after the precon- 
ditions are the criticalities that ABSTRIPS assigned and are used in the comparison 
with ALPINE. 

D.l     Problem Space Definition 
(GOTO-BOX 
(params (<box> <room>)) 
(preconds (and 

(is-type <box> box) ; (6) 
(in-room <box> <room>) ;(5) 
(in-room robot <room>) ;(3) 
)) 

(effects ((if (at robot <loc.l> <loc.2>)(del (at robot <loc.l> <loc.2>))) 
(if (next-to robot <box.i>)(del (next-to robot <box.l>))) 
(if (next-to robot <door.l>)(del (next-to robot <door.l>))) 
(add (next-to robot <box>))))) 

(GOTO-DOOR 
(params (<door> <room.x>)) 
(preconds (and 

(is-type <door> door) ;(6) 
(connects <door> <room.x> <room.y>) ;(6) 
(in-room robot <room.x>))) ;(3) 

(effects 
((if (at robot <loc.l> <loc.2>)(del (at robot <loc.l> <loc.2>))) 
(if (next-to robot <box.l>)(del (next-to robot <box.l>))) 
(if (next-to robot <door.l>)(del (next-to robot <door.l>))) 

177 
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(add (next-to robot <door>))))) 

(GOTO-LOC 
(params (<loc.x> <loc.y> <room.x>)) 
(preconds (and 

(loc-in-room <loc.x> <loc.y> <room.x>) ;(6) 
(in-room robot <room.x>))) ;(3) 

(effects 

((if (at robot <loc.l> <loc.2>)(del (at robot <loc.l> <loc.2>))) 
(if (next-to robot <box.l>)(del (next-to robot <box.l>))) 
(if (next-to robot <door.l>)(del (next-to robot <door.l>))) 

(add (at robot <loc.x> <loc.y>))))) 

(PUSH-BOX 
(params (<box.x> <box.y>)) 

(preconds (and 

(is-type <box.y> box) ;(6) 

(pushable <box.x>) ;(6) 
(in-room <box.y> <room.x>) ;(5) 

(in-room <box.x> <room.x>) ;(5) 
(in-room robot <room.x>) ;(3) 
(next-to robot <box.x>))) ;(2) 

(effects 
((if (at robot <loc.i> <loc.2>)(del (at robot <loc.l> <loc.2>))) 
(if (next-to robot <box.l>)(del (next-to robot <box.l>))) 
(if (next-to robot <door.l>)(del (next-to robot <door.l>))) 
(if (at <box.x> <loc.3> <loc.4>)(del (at <box.x> <loc.3> <loc.4>))) 
(if (next-to <box.x> <box.2>)(del (next-to <box.x> <box.2>))) 
(if (next-to <box.x> <door.2>)(del (next-to <box.x> <door.2>))) 
(if (next-to <box.3> <box.x>)(del (next-to <box.3> <box.x>))) 
(add (next-to <box.y> <box.x>)) 

(add (next-to <box.x> <box.y>)) 
(add (next-to robot <box.x>))))) 

(PUSH-TO-DOOR 
(params (<box> <door> <room.x>)) 
(preconds (and 

(connects <door> <room.x> <room.y>) ;(6) 
(pushable <box>) ;(6) 

(is-type <door> door) ;(6) 
(in-room <box> <room.x>) ;(B) 
(in-room robot <room.x>) ;(3) 

(next-to robot <box>))) ;(2) 
(effects 

((if (at robot <loc.i> <loc.2>)(del (at robot <loc.l> <loc.2>))) 

(if (next-to robot <box.l>)(del (next-to robot <box.i>))) 

(if (next-to robot <door.i>)(del (next-to robot <door.i>))) 
(if (at <box> <loc.3> <loc.4>)(del (at <box> <loc.3> <loc.4>))) 
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(if (next-to <box> <box.2>)(del (next-to <box> <box.2>))) 
(if (next-to <box> <door.2>)(del (next-to <box> <door.2>))) 

(if (next-to <box.3> <box>)(del (next-to <box.3> <box>))) 
(add (next-to <box> <door>)) 
(add (next-to robot <box>))))) 

(PÜSH-TO-LOC 

(params (<box> <loc.x> <loc.y>)) 
(preconds (and 

(pushable <box>) ;(6) 

(loc-in-room <loc.x> <loc.y> <room.x>) ;(6) 
(in-room <box> <room.x>) ;(5) 
(in-room robot <room.x>) ;(3) 
(next-to robot <box>))) ;(2) 

(effects 

((if (at robot <loc.l> <loc.2>)(del (at robot <loc.i> <loc.2>))) 
(if (next-to robot <box.l>)(del (next-to robot <box.l>))) 

(if (next-to robot <door.l>)(del (next-to robot <door.i>))) 

(if (at <box> <loc.3> <loc.4>)(del (at <box> <loc.3> <loc.4>))) 
(if (next-to <box> <box.2>)(del (next-to <box> <box.2>))) 
(if (next-to <box> <door.2>)(del (next-to <box> <door.2>))) 
(if (next-to <box.3> <box>)(del (next-to <box.3> <box>))) 
(add (at <box> <loc.x> <loc.y>)) 
(add (next-to robot <box>))))) 

(GO-THRU-DOOR 

(params (<door> <room.y> <room.x>)) 
(preconds (and 

(connects <door> <room.y> <room.x>) ; (6) 
(is-type <door> door) ;(6) 
(is-type <room.x> room) ;(6) 
(in-room robot <room.y>) ;(3) 
(status <door> open))) ;(1) 

(effects 

((if (at robot <loc.l> <loc.2>)(del (at robot <loc.l> <loc.2>))) 
(if (next-to robot <box.l>)(del (next-to robot <box.l>))) 
(if (next-to robot <door.l>)(del (next-to robot <door.l>))) 

(if (in-room robot <room.y>)(del (in-room robot <room.y>))) 
(add (in-room robot <room.x>))))) 

(PUSH-THRU-DOOR 
(params (<box> <door> <room.y> <room.x>)) 
(preconds (and 

(connects <door> <room.y> <room.x>) ;(6) 
(pushable <box>) ;(6) 
(is-type <door> door) ;(6) 

(is-type <room.x> room) ;(6) 
(in-room <box> <room.y>) ;(5) 
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(next-to <box> <door>) ;(4) 
(in-room robot <room.y>) ;(3) 

(next-to robot <box>) ;(2) 
(status <door> open))) ;(1) 

(effects 

((if (at robot <loc.l> <loc.2>)(del (at robot <loc.l> <loc.2>))) 
(if (next-to robot <box.l>)(del (next-to robot <box.l>))) 

(if (next-to robot <door.l>)(del (next-to robot <door.l>))) 
(if (at <box> <loc.3> <loc.4>)(del (at <box> <loc.3> <loc.4>))) 
(if (next-to <box> <box.2>)(del (next-to <box> <box.2>))) 

(if (next-to <box> <door.2>)(del (next-to <box> <door.2>))) 

(if (next-to <box.3> <box>)(del (next-to <box.3> <box>))) 

(if (in-room robot <room.y>)(del (in-room robot <room.y>))) 

(if (in-room <box> <room.y>)(del (in-room <box> <room.y>))) 
(add (in-room robot <room.x>)) 

(add (in-room <box> <room.x>)) 

(add (next-to robot <box>))))) 

(OPEN-DOOR 
(params (<door>)) 
(preconds (and 

(is-type <door> door) ;(6) 
(next-to robot <door>) ;(2) 
(status <door> closed))) ;(1) 

(effects 
((if (status <door> closed)(del (status <door> closed))) 
(add (status <door> open))))) 

(CLOSE-DOOR 

(params (<door>)) 
(preconds (and 

(is-type <door> door) ;(6) 

(next-to robot <door>) ;(2) 

(status <door> open))) ;(i) 
(effects 

((if (status <door> open)(del (status <door> open))) 
(add (status <door> closed))))) 

(setq »AXIOMS* 

'(((next-to <box.l-l> <box.2-l>) . ((inroom <box.l-l> <room.i-i>) 

(inroom <box.2-l> <room.l-l>))) 
((next-to robot <box.l-2>) . ((in-room <box.l-2> <room.l-2>) 

(in-room robot <room.l-2>))) 
((next-to robot <door.l-3>) . 

((connects <door.l-3> <room.x-3> <room.y-3>) 

(in-room robot <room.x-3>))) 
((" (status <door.l-4> closed)) . ((status <door.l-4> open))) 
((" (status <door.l-5> open)) . ((status <door.l-5> closed))) 
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)) 

(setq «-VARIABLE-TYPING* '( 
(isa 'robot 'type)(isa 'box 'object)(isa 'door 'object) 
(isa 'object 'type)(isa 'room 'type)(isa 'loc 'type) 

(isa 'status 'type) 
(isa-instance 'open 'status)(isa-instance 'closed 'status) 

(isa-instance 'robot 'robot)(isa-instance 'a 'box) 

(isa-instance 'b 'box)(isa-instance 'c 'box) 
(isa-instance 'd 'box)(isa-instance 'e 'box) 

(isa-instance '1 'box)(isa-instance 'rooml 'room) 
(isa-instance 'room2 'room)(isa-instance 'room3 'room) 
(isa-instance 'room4 'room)(isa-instance 'roomS 'room) 
(isa-instance 'room6 'room)(isa-instance 'room7 'room) 
(isa-instance 'doori2 'door)(isa-instance 'door23 'door) 

(isa-instance 'door34 'door)(isa-instance 'door25 'door) 
(isa-instance 'door56 'door)(isa-instance 'door26 'door) 
(isa-instance 'door36 'door)(isa-instance 'door67 'door))) 

(setq »PRIMARY* '( 
((next-to robot <box>) . (GOTO-BOX)) 

((next-to robot <door>) . (GOTO-DOOR)) 
((at robot <loc.x> <loc.y>) . (GOTO-LOC)) 
((next-to <box.l> <box.2>) . (PUSH-BOX)) 

((next-to <box> <door>) . (PUSH-TO-DOOR)) 
((at box <loc.x> <loc.y>) . (PUSH-TO-LOC)) 

((in-room robot <room>) . (GO-THRU-DOOR)) 
((in-room <box> <room>) . (PUSH-THRU-DOOR)) 
((status <door> open) . (OPEN-DOOR)) 
((status <door> closed) . (CLOSE-DOOR)))) 

Example Problem: 

Goal: '(and (in-room a rooml) (status door56 closed) 
(status doorl2 closed) (in-room robot room3) 

(in-room b room6)) 

Initial State: 
'((connects door67 room7 room6)(connects door67 room6 room7) 
(connects door56 room6 room5)(connects doorBS roomB room6) 

(connects door36 room6 room3)(connects door36 room3 room6) 
(connects door26 room6 room2)(connects door26 room2 room6) 
(connects door2B roomB room2)(connects door26 room2 room5) 

(connects door34 room4 room3)(connects door34 room3 room4) 
(connects door23 room3 room2)(connects door23 room2 room3) 
(connects doori2 room2 rooml)(connects doorl2 rooml room2) 

(next-to d door36) (status door67 closed) 
(status doorS6 open) (status door36 open) (status door26 open) 
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(status door25 closed) (status door34 open) (status door23 open) 
(status doorl2 open) (is-type room7 room) (is-type room6 room) 
(is-type roomB room) (is-type room4 room) (is-type room3 room) 
(is-type room2 room) (is-type rooml room) (is-type door67 door) 
(is-type door56 door) (is-type door36 door) 
(is-type door26 door) (is-type door25 door) 
(is-type door34 door) (is-type door23 door) 
(is-type doorl2 door) (pusbable e) (pushable d) (pushable c) 
(pushable b) (pushable a) (is-type e box) (is-type d box) 
(is-type c box) (is-type b box) (is-type a box) 
(in-room e room5) (in-room d room6) (in-room c room4) 
(in-room b room7) (in-room a room2) (in-room robot room2)) 

D.2    Experimental Results 

The experiments in this domain were run in CMU Common Lisp on a IBM RT Model 
130 with 16 megabytes of memory.   The tables below compares PRODIGY without 
any control knowledge, PRODIGY with the abstractions generated by ABSTRIPS, and 
PRODIGY with the abstractions generated by ALPINE. 

The entries in the table are defined as follows: 

Prob Num The problem number. 

Time Total CPU time used in solving the problem. A 600 CPU second time bound 
was imposed on all problems. 

Nodes Total number of nodes searched in solving the problem. 

Len Length of the solution found. Zero if no solution exists. 

ACT Time required to create the abstraction hierarchy. This time is also included 
in the total CPU time for ALPINE. 

AbNodes Nodes searched at each level in the hierarchy. Ordered from more abstract 
to less abstract levels. 

AbLen Solution length found at each level in the hierarchy.   Ordered from more 
abstract to less abstract levels. 
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Prob Prodigy Prodigy + Abstrips Prodigy + Alpine 
Num Time Nodes Len Time Nodes Len Time Nodes Len ACT A.bNodes AbLen 

1 3.7 37 16 4.4 33 13 8.3 37 16 0.6 19,4,14  7,2,7 
2 6.7 69 28 5.8 36 16 12.3 59 25 0.4 31,8,20 12,3,10 
3 1.3 21 8 3.2 30 12 3.0 23 8 0.4 4,12,7  1,4,3 
4 2.6 30 12 1.9 16 6 2.3 15 5 0.4 4,4,7  1,1,3 
5 4.1 46 20 4.3 35 15 9.9 48 20 0.7 22,16,10  8,7,5 
6 1.6 28 12 2.8 23 9 3.5 30 12 0.4 4,18,8  1,7,4 
7 3.8 51 22 1.7 16 7 2.3 18 7 0.4 4,8,6  1,3,3 
8 0.7 15 6 1.1 12 4 1.6 15 6 0.3 11,4   4,2 
9 6.5 72 24 8.1 56 23 13.1 72 24 0.4 50,0,22 13,0,11 

10 4.7 50 21 3.7 26 11 5.6 29 13 0.4 13,4,12  5,2,6 
11 4.7 52 23 9.9 75 30 10.3 51 23 0.6 20,13,18  9,5,9 
12 4.7 52 23 6.8 46 21 8.8 53 24 0.4 15,6,32 5,3,16 
13 1.4 32 10 2.9 34 13 2.5 32 10 0.3 26,6   7,3 
14 4.3 56 24 5.7 48 22 9.0 66 26 0.4 13,32,21 4,12,10 
15 2.9 39 8 4.9 34 12 4.3 24 10 0.4 6,12,6  2,5,3 
16 4.1 55 21 3.9 37 15 7.5 42 18 0.4 14,10,18  6,3,9 
17 2.9 37 14 2.1 16 7 2.9 21 7 0.5 4,10,7  1,3,3 
18 2.0 39 16 1.8 24 10 3.5 39 16 0.3 29,10  11,5 
19 2.9 43 11 5.4 47 18 4.2 29 11 0.4 8,10,11  2,4,5 
20 4.0 52 21 4.8 40 17 8.9 54 21 0.4 21,23,10  7,9,5 
21 1.4 20 8 2.1 18 8 2.9 21 8 0.4 4,11,6  1,4,3 
22 4.4 62 19 6.8 49 20 8.2 44 19 0.4 19,9,16  7,4,8 
23 2.7 29 11 3.2 29 11 6.8 30 11 0.5 20,6,4  7,2,2 
24 2.7 34 14 4.3 31 14 6.2 36 14 0.4 15,15,6  5,6,3 
25 3.6 42 16 5.7 46 16 8.1 41 16 0.6 19,10,12  7,3,6 
26 23.7 494 16 41.3 502 12 8.0 46 18 0.6 15,23,8  5,9,4 
27 4.6 63 25 6.6 69 24 5.2 41 16 0.6 4,27,10 1,10,5 
28 12.4 287 12 6.6 75 22 3.4 22 9 0.6 4,10,8  1,4,4 
29 5.9 65 27 7.4 53 22 9.3 52 22 0.8 13,23,16  5,9,8 
30 9.1 183 27 34.2 388 21 10.0 83 17 0.7 16,61,6  7,7,3 
31 14.3 151 41 11.6 87 31 18.8 122 19 0.7 99,15,8  9,6,4 
32 10.0 99 42 183.9 2318 27 23.3 97 42 0.8 55,24,18 23,10,9 
33 9.4 97 43 13.9 98 41 14.8 81 37 0.7 18,24,39 8,10,19 
34 3.2 41 16 3.6 28 12 4.5 30 12 0.7 6,16,8  2,6,4 
35 8.3 101 22 10.8 79 33 15.4 103 22 0.7 69,26,8  9,9,4 
36 6.9 76 31 8.0 54 25 15.9 78 31 0.8 34,34,10 13,13,5 
37 1.4 20 8 15.6 259 19 2.8 18 7 0.6 4,6,8  1,2,4 
38 45.1 927 24 21.3 415 33 20.9 327 21 0.7 16,301,10  7,9,5 
39 6.0 73 26 16.6 164 28 13.2 75 27 0.7 33,30,12 10,11,6 
40 7.9 99 33 8.9 70 29 16.4 101 33 0.6 53,32,16 13,12,8 
41 4.8 61 25 7.9 63 26 5.8 41 16 0.6 8,21,12  3,7,6 
42 3.9 51 20 4.8 38 18 9.1 50 20 0.7 19,23,8  7,9,4 
43 6.1 65 21 16.7 142 18 13.2 48 21 0.9 30,8,10 13,3,5 
44 5.8 65 26 8.2 77 17 8.9 42 18 0.7 16,12,14  7,4,7 
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Prob Prodigy Prodigy + Abstrips Prodigy + Alpine 
Num Time Nodes Len Time Nodes Len Time Nodes Len ACT AbNodes AbLen 

45 4.1 46 19 7.5 48 20 9.0 50 20 0.6 15,18,17 5,7,8 
46 4.3 62 20 6.8 52 21 7.9 58 18 0.5 30,18,10 5,8,5 
47 6.7 81 21 11.5 80 30 9.4 51 22 0.6 15,16,20 5,7,10 
48 2.0 29 12 3.2 30 13 4.0 29 12 0.6 4,15,10 1,6,5 
49 16.8 408 18 19.0 392 13 19.0 319 18 0.5 14,297,8 5,9,4 
50 18.3 414 36 18.3 284 31 9.1 132 18 0.6 6,112,14 2,9,7 
51 4.1 58 16 12.3 175 19 8.1 72 14 0.8 10,46,16 3,4,7 
52 6.9 89 31 10.3 83 33 10.6 69 30 0.8 13,23,33 5,10,15 
53 11.1 109 42 13.0 97 36 21.7 93 37 1.2 54,15,24 19,6,12 
54 4.0 49 21 6.8 47 20 7.6 41 17 0.9 12,21,8 5,8,4 
55 10.4 113 46 150.5 1801 53 23.2 111 46 1.1 58,21,32 21,9,16 
56 22.0 480 29 24.6 491 23 11.6 189 19 0.7 4,174,11 1,13,5 
57 15.5 173 48 9.4 74 31 31.9 228 32 1.0 183,33,12 14,12,6 
58 9.7 112 50 28.0 362 57 19.0 91 40 0.9 40,29,22 17,12,11 
59 13.4 165 41 18.7 129 51 22.8 159 38 1.0 110,29,20 16,12,10 
60 3.8 44 18 15.3 201 30 9.0 44 18 0.9 20,14,10 7,6,5 
61 8.2 85 35 14.6 106 42 17.9 82 35 1.1 37,21,24 15,8,12 
62 11.9 151 33 38.0 444 32 17.5 113 31 1.1 75,20,18 13,9,9 
63 59.3 1141 42 548.4 5229 51 19.3 94 40 0.9 37,41,16 16,16,8 
64 23.7 488 31 13.7 208 30 10.8 69 28 0.8 15,31,23 5,12,11 
65 5.0 60 24 21.8 332 28 6.1 39 16 0.8 8,21,10 3,8,5 
66 7.9 88 35 135.7 1533 28 14.7 79 32 0.8 39,18,22 13,8,11 
67 16.1 192 46 489.0 7625 47 27.2 156 46 1.0 95,45,16 21,17,8 
68 6.2 64 25 9.7 67 27 14.7 67 26 0.7 36,23,8 14,8,4 
69 8.5 98 26 225.0 4273 24 10.0 56 23 0.8 15,20,21 5,8,10 
70 5.6 58 24 4.6 32 15 6.4 43 18 0.8 6,22,15 2,9,7 
71 7.5 92 40 12.4 96 41 14.7 95 40 0.8 14,46,35 6,18,16 
72 7.4 64 27 69.8 734 30 13.4 50 23 0.8 26,2,22 11,1,11 
73 3.2 46 20 3.6 30 14 5.5 39 16 0.7 4,23,12 1,9,6 
74 7.5 93 39 13.4 112 45 10.4 73 31 0.8 10,35,28 4,14,13 
75 4.6 52 22 6.8 48 21 8.8 55 22 0.8 8,28,19 3,10,9 
76 5.6 57 24 80.6 1422 26 10.8 43 19 1.0 17,18,8 7,8,4 
77 61.9 1168 44 136.4 1299 34 29.1 106 44 1.1 67,13,26 26,5,13 
78 24.6 250 55 600.0 9947 — 33.2 183 40 1.5 141,18,24 21,7,12 
79 12.5 145 43 20.7 137 56 25.1 147 43 1.0 100,27,20 21,12,10 
80 13.0 219 35 415.5 3593 43 17.8 91 37 1.0 39,30,22 15,11,11 
81 13.1 131 32 9.3 72 28 15.5 92 23 1.3 59,21,12 9,8,6 
82 7.6 92 25 8.6 69 27 13.2 91 24 1.1 59,16,16 9,7,8 
83 7.6 66 27 16.7 129 44 13.1 58 26 1.2 10,12,18,18 4,5,8,9 
84 21.4 226 33 17.9 111 44 21.1 112 23 1.4 96,6,10 15,3,5 
85 5.6 75 29 600.0 12506 — 12.5 98 38 1.0 8,62,28 3,22,13 
86 42.6 883 52 15.8 117 50 29.5 203 45 1.1 66,125,12 26,13,6 
87 6.1 89 31 10.1 81 35 10.7 72 31 0.9 12,38,22 4,16,11 
88 14.5 259 25 83.0 1631 19 10.2 114 19 0.9 6,93,15 2,10,7 
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Prob Prodigy Prodigy + Abstrips Prodigy + Alpine 
Num Time Nodes Len Time Nodes Len Time Nodes Len ACT AbNodes AbLen 

89 6.0 75 30 98.8 2007 29 9.5 61 25 1.0 8,34,19 3,13,9 
90 72.6 1534 31 52.1 596 33 13.4 135 28 1.0 11,97,27 4,11,13 
91 8.2 86 37 270.2 2968 26 18.1 101 40 1.2 37,42,22 14,15,11 
92 5.5 65 26 323.5 5696 25 12.0 69 27 1.5 8,10,31,20 3,4,10,10 
93 2.6 38 17 6.3 65 21 7.2 44 19 1.0 8,26,10 3,11,5 
94 12.2 127 44 16.3 109 41 22.8 107 37 1.1 69,22,16 20,9,8 
95 18.3 184 46 114.7 1275 40 28.1 162 37 1.4 125,13,24 19,6,12 
96 120.2 2460 40 158.3 3291 40 17.7 77 33 1.1 40,23,14 16,10,7 
97 8.4 89 38 600.0 9209 — 18.8 89 38 1.1 44,23,22 17,10,11 
98 8.4 87 37 14.7 106 35 19.9 86 37 1.4 45,19,22 19,7,11 
99 101.5 2020 55 26.8 335 43 28.7 273 41 1.1 84,165,24 17,12,12 
100 36.0 786 38 27.7 447 30 24.5 392 32 1.0 17,344,31 6,11,15 
101 8.7 73 31 54.4 582 35 20.5 73 30 1.8 22,18,21,12 8,8,8,6 
102 13.5 134 58 14.4 92 40 31.7 220 53 1.5 60,136,24 25,16,12 
103 35.5 677 56 125.6 2326 40 17.4 81 34 1.1 42,23,16 16,10,8 
104 4.2 44 19 23.4 306 26 9.2 43 18 1.3 19,12,12 7,5,6 
105 30.2 665 32 10.9 75 33 13.3 71 31 1.2 24,29,18 9,13,9 
106 8.1 77 33 7.4 47 19 14.6 69 30 1.1 25,26,18 10,11,9 
107 75.3 1112 94 600.0 8977 — 51.0 410 49 1.3 345,41,24 20,17,12 
108 8.6 82 33 100.7 1785 31 14.6 67 27 1.1 31,24,12 13,8,6 
109 9.5 96 34 600.0 8762 — 21.3 107 37 1.1 65,22,20 19,8,10 
110 11.8 106 34 165.0 1762 21 17.8 73 31 1.3 37,20,16 15,8,8 
111 219.4 2995 31 15.3 104 43 21.6 109 35 1.8 63,24,22 14,10,11 
112 7.2 80 34 14.5 105 44 13.7 75 32 1.2 19,27,29 7,11,14 
113 10.4 138 47 50.0 826 51 14.3 114 33 1.2 14,70,30 6,13,14 
114 7.2 86 35 152.5 1878 36 15.0 77 31 1.3 32,29,16 12,11,8 
115 10.8 127 33 600.0 9792 — 28.8 594 22 1.1 10,566,18 4,9,9 
116 8.8 97 39 15.6 119 45 14.8 74 29 1.1 32,26,16 12,9,8 
117 8.8 80 31 8.0 47 22 17.7 74 30 1.4 42,18,14 16,7,7 
118 9.5 109 47 600.0 10149 — 16.4 96 39 1.1 30,44,22 11,17,11 
119 7.4 88 29 600.0 10161 — 12.9 67 25 1.1 30,23,14 10,8,7 
120 6.7 77 32 9.5 75 34 13.8 75 29 1.4 27,34,14 10,12,7 
121 4.1 48 21 180.8 2073 31 8.2 47 21 1.4 8,25,14 3,11,7 
122 8.7 103 37 12.4 87 37 19.6 104 37 1.1 42,46,16 17,12,8 
123 36.1 333 65 25.1 151 63 35.7 181 44 1.4 144,19,18 27,8,9 
124 93.0 1357 79 600.0 7919 — 70.6 529 59 1.4 468,39,22 31,17,11 
125 12.6 124 49 18.1 119 42 28.5 126 50 1.6 67,41,18 25,16,9 
126 9.0 77 33 166.6 1240 46 22.0 81 34 2.0 22,18,27,14 8,8,11,7 
127 17.9 157 67 600.0 8442 — 35.1 144 61 1.7 77,41,26 31,17,13 
128 35.3 677 56 243.7 4503 41 17.7 81 34 1.2 42,23,16 16,10,8 
129 8.2 75 33 27.4 320 33 16.4 73 30 1.5 34,25,14 13,10,7 
130 51.6 1084 43 600.0 11080 — 20.4 103 43 1.5 39,44,20 15,18,10 
131 8.3 77 33 7.9 51 21 14.6 69 30 1.3 25,26,18 10,11,9 
132 124.1 1798 123 600.0 9131 — 53.0 416 52 1.5 347,43,26 21,18,13 
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Prob Prodigy Prod igy + Abstrips Prodigy + Alpine 
Num Time Nodes Len Time Nodes Len Time ] Vodes Len ACT AbNodes AbLen 

133 11.2 110 40 108.2 1793 36 16.9 71 29 1.3 37,20,14  15,7,7 
134 10.7 113 40 600.0 8619 — 22.1 113 40 1.3 65,26,22 19,10,11 
135 15.9 124 41 197.0 2048 23 23.5 86 36 1.6 50,18,18  20,7,9 
136 18.3 190 56 138.8 1383 40 22.8 109 35 2.2 63,24,22 14,10,11 
137 8.1 82 35 600.0 10584 — 17.5 79 34 1.4 36,27,16 15,11,8 
138 12.2 162 57 44.0 694 50 15.2 118 35 1.4 14,72,32 6,14,15 
139 12.4 135 54 257.1 3142 44 25.5 125 49 1.5 61,42,22 22,16,11 
140 12.6 146 40 600.0 10072 — 36.2 729 26 1.3 10,701,18  4,13,9 
141 9.0 97 39 15.9 123 46 14.8 74 29 1.3 32,26,16  12,9,8 
142 9.4 84 33 8.9 53 25 18.5 78 32 1.6 42,20,16  16,8,8 
143 9.7 109 47 600.0 10203 — 16.7 96 39 1.3 30,44,22 11,17,11 
144 21.0 426 41 600.0 9803 — 24.7 320 35 1.2 30,270,20 10,15,10 
145 11.5 197 37 13.0 105 38 14.6 79 31 1.6 27,36,16 10,13,8 
146 4.5 48 21 180.0 2073 31 8.8 47 21 1.8 8,25,14  3,11,7 
147 9.6 105 38 13.2 91 39 20.8 106 38 1.3 44,46,16 18,12,8 
148 40.2 358 76 29.0 178 74 44.2 206 55 1.6 163,23,20 35,10,10 
149 105.0 1618 79 600.0 7979 — 70.3 529 59 1.8 468,39,22 31,17,11 
150 600.0 5571 — 600.0 7979 — 600.0 4923 — 1.8 
151 9.5 85 37 95.6 854 46 23.5 89 38 2.2 22,18,33,16 8,8,14,8 
152 600.0 9082 — 600.0 8372 — 53.7 234 82 2.0 148,56,30 44,23,15 
153 36.6 683 59 600.0 11730 — 20.3 87 37 1.5 46,25,16 18,11,8 
154 28.7 531 47 30.7 360 39 22.5 94 39 1.7 49,29,16 19,12,8 
155 77.1 1495 49 600.0 11079 — 22.5 107 45 1.7 45,40,22 17,17,11 
156 8.3 77 33 8.3 55 23 15.0 69 30 1.5 25,26,18 10,11,9 
157 123.4 1798 123 600.0 9241 — 53.1 416 52 1.9 347,43,26 21,18,13 
158 13.9 133 49 184.0 3033 43 18.0 75 31 1.5 39,20,16  16,7,8 
159 10.9 115 41 600.0 8556 — 23.8 117 42 1.8 67,26,24 20,10,12 
160 16.5 128 43 248.4 2832 30 23.8 90 38 1.7 50,20,20 20,8,10 
161 20.7 202 62 232.0 2305 51 26.4 123 42 2.4 67,28,28 16,12,14 
162 11.8 111 45 600.0 9502 — 23.8 102 42 1.5 57,27,18 21,12,9 
163 12.7 164 58 45.5 715 55 19.9 120 36 1.9 14,16,72,18 6,7,14,9 
164 12.5 139 56 206.2 2476 54 27.2 129 51 1.7 61,44,24 22,17,12 
165 30.3 593 55 600.0 10104 — 57.2 1150 41 1.5 10,1112,28 4,23,14 
166 12.6 129 52 600.0 10541 — 23.9 106 42 1.8 51,37,18 20,13,9 
167 10.1 98 38 9.4 57 27 19.1 82 34 1.8 42,22,18  16,9,9 
168 10.4 111 48 600.0 10197 — 17.4 98 40 1.5 30,46,22 11,18,11 
169 27.8 567 51 600.0 9948 — 37.6 569 40 1.6 36,511,22 13,16,11 
170 11.3 197 37 49.5 555 39 14.9 79 31 1.8 27,36,16 10,13,8 
171 18.8 355 44 600.0 11812 — 17.6 84 36 2.0 27,37,20 11,15,10 
172 600.0 7218 — 600.0 11812 — 600.0 4921 — 1.8 
173 40.0 358 76 600.0 7641 — 46.7 206 55 1.8 163,23,20 35,10,10 
174 118.3 1879 79 600.0 7916 — 67.5 529 59 2.2 468,39,22 31,17,11 
175 600.0 5512 — 600.0 7916 — 600.0 5020 — 2.1 
176 187.6 3783 59 600.0 10266 — 49.5 598 53 1.9 75,503,20 23,20,10 
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Prob Prodigy Prodigy + Abstrips Prodigy + Alpine 
Num Time Nodes Len Time Nodes Len Time Nodes Len ACT AbNodes    AbLen 

177 107.8 2305 74 144.3 1207 82 34.4 486 44 1.8 23,428,35   9,18,17 
178 115.0 2650 56 418.1 4936 65 25.1 340 37 1.7 16,294,30   6,16,15 
179 180.0 3656 90 600.0 10640 — 36.5 327 44 2.3 101,212,14   19,18,7 
180 41.2 820 68 131.6 1143 36 47.4 667 46 2.1 80,569,18   21,16,9 
181 53.7 1003 54 78.6 1065 49 41.2 -340 51 2.4. 93,225,22 25,15,11 
182 34.2 732 55 600.0 11400 ■ — 20.6 85 36 2.8 14,16,41,14 6,7,16,7 
183 20.8 293 65 600.0 9194 — 38.5 289 60 1.7 68,199,22 28,21,11 
184 18.0 149 60 600.0 7006 — 35.9 134 56 2.1 85,29,20 34,12,10 
185 59.9 1245 39 600.0 10137 — 30.4 283 43 2.2 77,186,20 13,20,10 
186 20.7 195 78 342.9 4956 29 40.1 144 61 2.8 90,34,20 37,14,10 
187 12.4 111 49 600.0 11646 — 20.3 86 37 1.7 43,21,22   17,9,11 
188 402.9 7733 69 600.0 6821 — 52.9 747 52 2.2 47,676,24 20,20,12 
189 10.7 108 42 17.9 150 49 21.8 105 42 2.4 43,40,22 15,16,11 
190 69.9 1324 67 600.0 9674 — 45.4 400 46 1.9 195,183,22 19,16,11 
191 11.6 121 51 472.3 3234 68 19.3 100 44 1.7 29,43,28 13,17,14 
192 600.0 8395 — 600.0 10231 — 32.2 181 48 2.7 117,48,16   22,18,8 
193 459.0 8474 131 267.9 2678 56 44.5 207 59 2.5 147,42,18   35,15,9 
194 131.8 1952 68 134.3 1348 51 31.6 122 55 2.3 53,45,24 24,19,12 
195 46.5 571 101 460.0 5863 63 29.0 136 44 2.1 92,22,22 23,10,11 
196 15.6 145 57 600.0 10000 — 28.9 125 48 1.7 75,28,22 24,13,11 
197 33.8 439 42 600.0 8055 — 31.0 164 38 2.3 126,24,14   20,11,7 
198 10.2 98 41 15.9 113 46 17.6 88 39 1.7 27,41,20 12,17,10 
199 354.0 8068 81 600.0 10279 — 244.7 4987 54 1.6 30,4925,32 12,26,16 
200 133.6 2898 91 141.0 1799 59 47.4 874 45 1.7 22,814,38   8,18,19 
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